34 resultados para Tectono-stratigraphy
Resumo:
From the Sellevollmyra bog at Andoya, northern Norway, a 440-cm long peat core covering the last c. 7000 calendar years was examined for humification, loss-on-ignition, microfossils, macrofossils and tephra. The age model was based on a Bayesian wiggle-match of 35 C-14 dates and two historically anchored tephra layers. Based on changes in lithology and biostratigraphical climate proxies, several climatic changes were identified ( periods of the most fundamental changes in italics): 6410-6380, 6230-6050, 5730-5640, 5470-5430, 5340-5310, 5270-5100, 4790-4710, 4890-4820, 4380-4320, 4220-4120, 4000-3810, 3610-3580, 3370-3340 ( regionally 2850-2750; in Sellevollmyra a hiatus between 2960-2520), 2330-2220, 1950, 1530-1450, 1150-840, 730? and c. 600? cal. yr BP. Most of these climate changes are known from other investigations of different palaeoclimate proxies in northern and middle Europe. Some volcanic eruptions seemingly coincide with vegetation changes recorded in the peat, e.g. about 5760 cal. yr BP; however, the known climatic deterioration at the time of the Hekla-4 tephra layer started some decades before the eruption event.
Resumo:
In this article we provide a brief overview of the protocols for dating peat profiles using tephrochronology. A standardised methodology for the detection, extraction and analysis of tephras is presented and the relevant problems and limitations are discussed.
Correlating Alpine glaciation with Adriatic sea-level changes through lake and alluvial stratigraphy
Resumo:
We compare lake and alluvial stratigraphy along a frame connecting the southern Alpine foothills and the Adriatic Sea, with the aim of matching the effects of Alpine glaciation and sea-level changes on sedimentation during the last glacial cycle. The palynostratigraphy of Lake Fimon provided proxies for regional vegetation and climate change and was coupled with sediment petrography, loss on ignition and magnetic susceptibility, disentangling alluvial phases from fluvioglacial activity related to culminations of the southeastern Alpine glaciers. The Fimon area was not reached by alluvial fans during the penultimate glacial maximum, nor by the sea transgression during the last interglacial, but a closed lake soon developed at the Eemian onset due to enhanced rainfall. Sea-level fall at glacial inception triggered the entrenchment of the drainage network in the plain reaching the outer Fimon Basin. Slow aggradation, but no sign of fluvioglacial activity, lasted to 38.2 +/- 1.45 cal. ka BP, when a major forest withdrawal took place, coeval to the spread of alluvial fans. By 27.5 perpendicular to 0.5 cal. ka BP the Fimon Basin was dammed by the Brenta outwash system. The main step of of forest recovery commenced at around (15.8) cal. ka BP, when apex trenching of the outwash fans was triggered by the glacier's decay. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The comparison of palaeoclimate records on their own independent timescales is central to the work of the INTIMATE (INTegrating Ice core, MArine and TErrestrial records) network. For the North Atlantic region, an event stratigraphy has been established from the high-precision Greenland ice-core records and the integrated GICC05 chronology. This stratotype provides a palaeoclimate signal to which the timing and nature of palaeoenvironmental change recorded in marine and terrestrial archives can be compared. To facilitate this wider comparison, without assuming synchroneity of climatic change/proxy response, INTIMATE has also focussed on the development of tools to achieve this. In particular the use of time-parallel marker horizons e.g. tephra layers (volcanic ash). Coupled with the recent temporal extension of the Greenland stratotype, as part of this special issue, we present an updated INTIMATE event stratigraphy highlighting key tephra horizons used for correlation across Europe and the North Atlantic. We discuss the advantages of such an approach, and the key challenges for the further integration of terrestrial palaeoenvironmental records with those from ice cores and the marine realm.
Resumo:
The distribution of eogenetic alterations in shoreface-offshore and coarse-grained deltaic, calcarenite to hybrid arenites of the Mheiherrat Formation (lower Rudeis), Early Miocene, the Gulf of Suez, Egypt) can be constrained within a sequence stratigraphic framework. The bioclast-rich, shoreface (trangressive systems tract; TST) and shoreface (highstand systems tract; HST) arenites, particularly those below the parasequence boundaries and maximum flooding surface, are cemented by grain-coating microcrystalline, circumgranular isopacheous acicular and columnar, and coarse-crystalline calcite (δ18OVPDB = -3.6 to -0.3 ‰; δ13CVPDB = -2.3 to -0.7 ‰), non-Ferro an dolomite (δ18OVPDB = -3.9 to +0.9‰; δ13CVPDB = -2.5 ‰ to -0.7 ‰), and pyrite. Zeolite, palygorskite and gypsum occur in the HST shoreface arenites, being enhanced by aird climatic condations. The coarse-grained deltaic LST deposits are pervasively cemented by coarse-crystalline, pore-filling calcite and small amounts of microcrystalline calcite (δ18OVPDB = -4.4 to -2.3 ‰; δ13CVPDB = -2.8 to -1.3 ‰) and non-ferroan dolomite (δ18OVPDB = -4.8 to -2.5 ‰; δ13CVPDB = -3.3 to -1.5 ‰). Thus, this study demonstrates that changes in pore-water chemistry, which induced changes in the texture, composition and extent of cementation in the Miocene arenites was controlled by changes in the relative sea level and by the paleo-climatic conditions during deposition of the HST arenites.
Sequence stratigraphy related distribution of diagenetic alterations In Miocene deltaic and shoreface arenites, the Suez Rift, EGYPT.. Available from: https://www.researchgate.net/publication/264545153_Sequence_stratigraphy_related_distribution_of_diagenetic_alterations_In_Miocene_deltaic_and_shoreface_arenites_the_Suez_Rift_EGYPT [accessed Apr 15, 2015].
Resumo:
Cryptotephras (tephra not visible to the naked eye) form the foundation of the tephrostratigraphic frameworks used in Europe to date and correlate widely distributed geologic, paleoenvironmental and archaeological records. Pyne-O'Donnell et al. (2012) established the potential for developing a similar crypto-tephrostratigraphy across eastern North America by identifying multiple tephra, including the White River Ash (east; WRAe), St. Helens We and East Lake, in a peat core located in Newfoundland. Following on from this work, several ongoing projects have examined additional peat cores from Michigan, New York State, Maine, Nova Scotia and Newfoundland to build a tephrostratigraphic framework for this region. Using the precedent set by recent research by Jensen et al.(in press) that correlated the Alaskan WRAe to the European cryptotephra AD860B, unknown tephras identified in this work were not necessarily assumed to be from "expected" source areas (e.g. the Cascades). Here we present several examples of the preservation of tephra layers with an intercontinental distribution (i.e. WRAe and Ksudach 1), from relatively small magnitude events (i.e. St. Helens layer T, Mono Crater), and the first example of a Mexican ash in the NE (Volcan Ceboruco, Jala pumice). There are several implications of the identification of these units. These far-travelled ashes: (1) highlight the need to consider "ultra" distal source volcanoes for unknown cryptotephra deposits,. (2) present an opportunity for physical volcanologists to examine why some eruptions have an exceptional distribution of ash that is not necessarily controlled by the magnitude of the event. (3) complicate the idea of using tephrostratigraphic frameworks to understand the frequency of eruptions towards aiding hazard planning and prediction (e.g. Swindles et al., 2011). (4) show that there is a real potential to link tropical and mid to high-latitude paleoenvironmental records. Jensen et al. (in press) Transatlantic correlation of the Alaskan White River Ash. Geology. Pyne-O'Donnell et al. (2012). High-precision ultra-distal Holocene tephrochronology in North America. Quaternary Science Reviews, 52, 6-11. Swindles et al. (2011). A 7000 yr perspective on volcanic ash clouds affecting northern Europe. Geology, 39, 887-890.
Resumo:
The objective of this study was to determine how structure, stratigraphy, and weathering influence fate and transport of contaminants (particularly U) in the ground water and geologic material at the Department of Energy (DOE) Environmental Remediation Sciences Department (ERSD) Field Research Center (FRC). Several cores were collected near four former unlined adjoining waste disposal ponds. The cores were collected, described, analyzed for U, and compared with ground water geochemistry from surrounding multilevel wells. At some locations, acidic U-contaminated ground water was found to preferentially flow in small remnant fractures weathering the surrounding shale (nitric acid extractable U [UNA] usually <50 mg kg–1) into thin (
Resumo:
A Holocene palaeoecological sequence from Villaverde, south-central Spain, is presented. The pollen stratigraphy is used to infer past vegetation changes within a catchment area that represents the boundary between semi-arid, plateau and mountain vegetation. From c. 9700–7530 cal. yr BP, Pinus is dominant, probably as a result of a combination of a relatively dry climate and natural fire disturbance. From c. 7530–5900 cal. yr BP, moderate invasion by Quercus appears to be a migrational response following increased moisture and temperature, but in part shaped by competitive adjustments. From c. 5900–5000 cal. yr BP, the pine forests are replaced by deciduous-Quercus forests with an important contribution from Corylus, Betula, Fraxinus and Alnus. Mediterranean-type forests spread from c. 5000 to 1920 cal. yr BP coincident with expansions of Artemisia, Juniperus and other xerophytes. From c. 1920–1160 cal. yr BP, Pinus becomes dominant after a disturbance- mediated invasion of the oak forests. Human impact upon the regional landscape was negligible during the Neolithic, and limited in the Bronze and Iron Ages. Local deforestation and the expansion of agro-pastoral activities occur after c. 1600 cal. yr BP.
Resumo:
External climate forcings-such as long-term changes in solar insolation-generate different climate responses in tropical and high latitude regions(1). Documenting the spatial and temporal variability of past climates is therefore critical for understanding how such forcings are translated into regional climate variability. In contrast to the data-richmiddle and high latitudes, high-quality climate-proxy records from equatorial regions are relatively few(2-4), especially from regions experiencing the bimodal seasonal rainfall distribution associated with twice-annual passage of the Intertropical Convergence Zone. Here we present a continuous and well-resolved climate-proxy record of hydrological variability during the past 25,000 years from equatorial East Africa. Our results, based on complementary evidence from seismic-reflection stratigraphy and organic biomarker molecules in the sediment record of Lake Challa near Mount Kilimanjaro, reveal that monsoon rainfall in this region varied at half-precessional (similar to 11,500-year) intervals in phase with orbitally controlled insolation forcing. The southeasterly and northeasterly monsoons that advect moisture from the western Indian Ocean were strengthened in alternation when the inter-hemispheric insolation gradient was at a maximum; dry conditions prevailed when neither monsoon was intensified and modest local March or September insolation weakened the rain season that followed. On sub-millennial timescales, the temporal pattern of hydrological change on the East African Equator bears clear high-northern-latitude signatures, but on the orbital timescale it mainly responded to low-latitude insolation forcing. Predominance of low-latitude climate processes in this monsoon region can be attributed to the low-latitude position of its continental regions of surface air flow convergence, and its relative isolation from the Atlantic Ocean, where prominent meridional overturning circulation more tightly couples low-latitude climate regimes to high-latitude boundary conditions.
Resumo:
The problem of insufficient age-control limits the utilisation of the 8.2 ka BP event for modelling freshwater forcing in climate change studies. High-resolution radiocarbon dates, magnetic susceptibility and lithostratigraphic evidence from a lake sediment core from Nedre Hervavatnet located at Sygnefjell in western Norway provide a record of the early Holocene. We use the method of radiocarbon wiggle-match dating of the lake sediments using the non-linear relationship between the C-14 calibration curve and the consecutive accumulation order of the sample series in order to build a high-resolution age-model. The timing and duration of Holocene environmental changes is estimated using 38 AMS radiocarbon dates on terrestrial macrofossils, insects and chironomids covering the time period from 9750 to 1180 cal BP. Chironomids, Salix and Betula leaves produce the most consistent results. Sedimentological and physical properties of the core suggest that three meltwater events with high sedimentation rates are superimposed on a long-term trend with glacier retreat between 9750 and 8000 cal BP. The lake sediment sequence of Nedre Hervavatnet demonstrates the following: only a reliable high-resolution geochronology based on carefully selected terrestrial macrofossils allows the reconstruction of a more refined and complex environmental change history before and during the 8.2 ka event. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The chronologies of five northern European ombrotrophic peat bogs subjected to a large ANIS C-14 dating effort (32-44 dates/site) are presented here. The results of Bayesian calibration (BCal) of dates with a prior assumption of chronological ordering were compared with a Bayesian wiggle-match approach (Bpeat) which assumes constant linear accumulation over sections of the peat profile. Interpolation of BCal age estimates of dense sequences of C-14 dates showed variable patterns of peat accumulation with time, with changes in accumulation occurring at intervals ranging from 20 to 50 cm. Within these intervals, peat accumulation appeared to be relatively linear. Close analysis suggests that some of the inferred variations in accumulation rate were related to the plant macrofossil composition of the peat. The wiggle-matched age-depth models had relatively high chronological uncertainty within intervals of closely spaced 14 C dates, suggesting that the premise of constant linear accumulation over large sections of the peat profile is unrealistic. Age models based on the assumption of linear accumulation over large parts of a peat core (and therefore only effective over millennial timescales), are not compatible with studies examining environmental change during the Holocene, where variability often occurs at decadal to centennial time-scales. Ideally, future wiggle-match age models should be constrained, with boundaries between sections based on the plant macrofossil composition of the peat and physical-chemical parameters such as the degree of decomposition. Strategies for the selection of material for dating should be designed so that there should be enough C-14 dates to accurately reconstruct the peat accumulation rate of each homogeneous stratigraphic unit. (c) 2006 Elsevier Ltd. All rights reserved.