49 resultados para Targets: (HIP 78530, [PGZ2001] J161031.9-191305, GSC 06214-00210, 1RXS J160929.1-210524)
Resumo:
AIMS/HYPOTHESIS: This study examined the biological effects of the GIP receptor antagonist, (Pro3)GIP and the GLP-1 receptor antagonist, exendin(9-39)amide.
METHODS: Cyclic AMP production was assessed in Chinese hamster lung fibroblasts transfected with human GIP or GLP-1 receptors, respectively. In vitro insulin release studies were assessed in BRIN-BD11 cells while in vivo insulinotropic and glycaemic responses were measured in obese diabetic ( ob/ ob) mice.
RESULTS: In GIP receptor-transfected fibroblasts, (Pro(3))GIP or exendin(9-39)amide inhibited GIP-stimulated cyclic AMP production with maximal inhibition of 70.0+/-3.5% and 73.5+/-3.2% at 10(-6) mol/l, respectively. In GLP-1 receptor-transfected fibroblasts, exendin(9-39)amide inhibited GLP-1-stimulated cyclic AMP production with maximal inhibition of 60+/-0.7% at 10(-6) mol/l, whereas (Pro(3))GIP had no effect. (Pro(3))GIP specifically inhibited GIP-stimulated insulin release (86%; p<0.001) from clonal BRIN-BD11 cells, but had no effect on GLP-1-stimulated insulin release. In contrast, exendin(9-39)amide inhibited both GIP and GLP-1-stimulated insulin release (57% and 44%, respectively; p<0.001). Administration of (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides (25 nmol/kg body weight, i.p.) to fasted (ob/ob) mice decreased the plasma insulin responses by 42%, 54% and 49%, respectively (p<0.01 to p<0.001). The hyperinsulinaemia of non-fasted (ob/ob) mice was decreased by 19%, 27% and 18% (p<0.05 to p<0.01) by injection of (Pro3)GIP, exendin(9-39)amide or combined peptides but accompanying changes of plasma glucose were small.
CONCLUSIONS/INTERPRETATION: These data show that (Pro(3))GIP is a specific GIP receptor antagonist. Furthermore, feeding studies in one commonly used animal model of obesity and diabetes, (ob/ob) mice, suggest that GIP is the major physiological component of the enteroinsular axis, contributing approximately 80% to incretin-induced insulin release.
Resumo:
Glucagonlike peptide-1(7 36)amide (GLP-1) is an incretin hormone with therapeutic potential for type 2 diabetes. Rapid removal of the Nterminal dipeptide, His7-Ala8, by the ubiquitous enzyme dipeptidyl peptidase IV (DPP IV) curtails the biological activity of GLP-1. Chemical modifications or substitutions of GLP-1 at His7 or Ala8 improve resistance to DPPIV action, but this often reduces potency. Little attention has focused on the metabolic stability and functional activity of GLP-1 analogues with amino acid substitution at Glu9, adjacent to the DPP IV cleavage site. We generated three novel Glu9-substituted GLP-1 analogues, (Pro9)GLP-1, (Phe9)GLP-1 and (Tyr9)GLP-1 and show for the first time that Glu9 of GLP-1 is important in DPP IV degradation, since replacing this amino acid, particularly with proline, substantially reduced susceptibility to degradation. All three novel GLP-1 analogues showed similar or slightly enhanced insulinotropic activity compared with native GLP-1 despite a moderate 4 10-fold reduction in receptor binding and cAMP generation. In addition, (Pro9)GLP 1 showed significant ability to moderate the plasma glucose excursion and increase circulating insulin concentrations in severely insulin resistant obese diabetic (ob/ob) mice. These observations indicate the importance of Glu9 for the biological activity of GLP-1 and susceptibility to DPP IVmediated degradation.
Resumo:
Background Childhood asthma is characterized by inflammation of the airways. Structural changes of the airway wall may also be seen in some children early in the course of the disease. Matrix metalloproteinases (MMPs) are key mediators in the metabolism of the extracellular matrix (ECM). Objective To investigate the balance of MMP-8, MMP-9 and tissue inhibitor of metalloproteinases (TIMP)-1 in the airways of children with asthma. Methods One hundred and twenty-four children undergoing elective surgical procedures also underwent non-bronchoscopic bronchoalveolar lavage (BAL). MMP-8, MMP-9 and TIMP-1 were measured by ELISA. Results There was a significant reduction in MMP-9 in atopic asthmatic children (n=31) compared with normal children (n=30) [median difference: 0.57 ng/mL (95% confidence interval: 0.18–1.1 ng/mL)]. The ratio of MMP-9 to TIMP-1 was also reduced in asthmatic children. Levels of all three proteins were significantly correlated to each other and to the relative proportions of particular inflammatory cells in BAL fluid (BALF). Both MMP-8 and MMP-9 were moderately strongly correlated to the percentage neutrophil count (r=0.40 and 0.47, respectively, P
Resumo:
Bacterial infection primarily with Staphylococcus spp. and Propionibacterium acnes remains a significant complication following total hip replacement. In this in vitro study, we investigated the efficacy of gentamicin loading of bone cement and pre- and postoperative administration of cefuroxime in the prevention of biofilm formation by clinical isolates. High and low initial inocula, representative of the number of bacteria that may be present at the operative site as a result of overt infection and skin contamination, respectively, were used. When a high initial inoculum was used, gentamicin loading of the cement did not prevent biofilm formation by the 10 Staphylococcus spp. and the 10 P. acnes isolates tested. Similarly, the use of cefuroxime in the fluid phase with gentamicin-loaded cement did not prevent biofilm formation by four Staphylococcus spp. and four P. acnes isolates tested. However, when a low bacterial inoculum was used, a combination of both gentamicin-loaded cement and cefuroxime prevented biofilm formation by these eight isolates. Our results indicate that this antibiotic combination may protect against infection after intra-operative challenge with bacteria present in low numbers as a result of contamination from the skin but would not protect against bacteria present in high numbers as a result of overt infection of an existing implant.
Resumo:
There is a need to provide rapid, sensitive, and often high throughput detection of pathogens in diagnostic virology. Viral gastroenteritis is a serious health issue often leading to hospitalization in the young, the immunocompromised and the elderly. The common causes of viral gastroenteritis include rotavirus, norovirus (genogroups I and II), astrovirus, and group F adenoviruses (serotypes 40 and 41). This article describes the work-up of two internally controlled multiplex, probe-based PCR assays and reports on the clinical validation over a 3-year period, March 2007 to February 2010. Multiplex assays were developed using a combination of TaqMan™ and minor groove binder (MGB™) hydrolysis probes. The assays were validated using a panel of 137 specimens, previously positive via a nested gel-based assay. The assays had improved sensitivity for adenovirus, rotavirus, and norovirus (97.3% vs. 86.1%, 100% vs. 87.8%, and 95.1% vs. 79.5%, respectively) and also more specific for targets adenovirus, rotavirus, and norovirus (99% vs. 95.2%, 100% vs. 93.6%, and 97.9% vs. 92.3%, respectively). For the specimens tested, both assays had equal sensitivity and specificity for astrovirus (100%). Overall the probe-based assays detected 16 more positive specimens than the nested gel-based assay. Post-introduction to the routine diagnostic service, a total of 9,846 specimens were processed with multiplex 1 and 2 (7,053 pediatric, 2,793 adult) over the 3-year study period. This clinically validated, probe-based multiplex testing algorithm allows highly sensitive and timely diagnosis of the four most prominent causes of viral gastroenteritis.
Resumo:
Reduction of proton acceleration in the interaction of a high-intensity, picosecond laser with a 50-mu m aluminum target was observed when 0.1-6 mu m of plastic was deposited on the back surface (opposite side of the laser). The maximum energy and number of energetic protons observed at the back of the target were greatly reduced in comparison to pure aluminum and plastic targets of the same thickness. This is attributed to the effect of the interface between the layers. Modeling of the electron propagation in the targets using a hybrid code showed strong magnetic-field generation at the interface and rapid surface heating of the aluminum layer, which may account for the results. (c) 2006 American Institute of Physics.
Resumo:
Aims. We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters.
Methods. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 s, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300 s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy.
Results. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosive evaporation phase a region of high-density cool material propagated upward through the corona. This material underwent a rapid increase in temperature as it was unable to radiate away all of the energy deposited across it by the non-thermal electron beam and via thermal conduction. A narrow and high-density (ne ≤ 1015 cm-3) region at the base of the flare transition region was the source of optical line emission in the model atmosphere. The collision-stopping depth of electrons was calculated throughout the evolution of the flare, and it was found that the compression of the lower atmosphere may permit electrons to penetrate farther into a flaring atmosphere compared to a quiet Sun atmosphere.
Resumo:
<p>BACKGROUND: Aberrant DNA methylation has been implicated as a key survival mechanism in cancer, whereby promoter hypermethylation silences genes essential for many cellular processes including apoptosis. Limited data is available on the methylation profile of apoptotic genes in prostate cancer (CaP). The aim of this study was to profile methylation of apoptotic-related genes in CaP using denaturing high performance liquid chromatography (DHPLC).p><p>METHODS: Based on an in silico selection process, 13 genes were screened for methylation in CaP cell lines using DHPLC. Quantitative methylation specific PCR was employed to determine methylation levels in prostate tissue specimens (n = 135), representing tumor, histologically benign prostate, high-grade prostatic intraepithelial neoplasia and benign prostatic hyperplasia. Gene expression was measured by QRT-PCR in cell lines and tissue specimens.p><p>RESULTS: The promoters of BIK, BNIP3, cFLIP, TMS1, DCR1, DCR2, and CDKN2A appeared fully or partially methylated in a number of malignant cell lines. This is the first report of aberrant methylation of BIK, BNIP3, and cFLIP in CaP. Quantitative methylation analysis in prostate tissues identified 5 genes (BNIP3, CDKN2A, DCR1, DCR2 and TMS1) which were frequently methylated in tumors but were unmethylated in 100% of benign tissues. Furthermore, 69% of tumors were methylated in at least one of the five-gene panel. In the case of all genes, except BNIP3, promoter hypermethylation was associated with concurrent downregulation of gene expression.p><p>CONCLUSION: Future examination of this "CaP apoptotic methylation signature" in a larger cohort of patients is justified to further evaluate its value as a diagnostic and prognostic marker.p>
Resumo:
The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed.
Resumo:
Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid in-activation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1 (9-36),amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC50 values 32(.)9 and 6(.)7 nM, respectively) compared with native GLP-1 (IC50 0(.)37 nM). Similarly, both analogues stimulated cAMP production with EC50 values of 16(.)3 and 27 nM respectively compared with GLP-1 (EC50 4(.)7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5(.)6 mM glucose (P