24 resultados para TIME-COURSE
Resumo:
Reasoning that is deliberative and reflective often requires the inhibition of intuitive responses. The Cognitive Reflection Test (CRT) is designed to assess people’s ability to suppress incorrect heuristic responses in favour of deliberation. Correct responding on the CRT predicts performance on a range of tasks in which intuitive processes lead to incorrect responses, suggesting indirectly that CRT performance is related to cognitive control. Yet little is known about the cognitive processes underlying performance on the CRT. In the current research, we employed a novel mouse tracking mjavascript:void(0);ethodology to capture the time-course of reasoning on the CRT. Analysis of mouse cursor trajectories revealed that participants were initially drawn towards the incorrect (i.e., intuitive) option even when the correct (deliberative) option was ultimately chosen. Conversely, participants were not attracted to the correct option when they ultimately chose the incorrect intuitive one. We conclude that intuitive processes are activated automatically on the CRT and must be inhibited in order to respond correctly. When participants responded intuitively, there was no evidence that deliberative reasoning had become engaged.
Resumo:
Triclabendazole (TCBZ), the anthelmintic drug active against both mature and immature liver flukes, was used to investigate the effect of in vivo treatment on the tegumental surface of juvenile Fasciola gigantica. Five goats were infected with 150 F. gigantica metacercariae each by oral gavage. Four of them were treated with single dose of TCBZ at 10mg/kg at four weeks post-infection. They were euthanized at 0 (untreated), 24, 48, 72 and 96h post treatment. Juvenile flukes were manually retrieved from the goat livers and processed for scanning electron microscopy. In control flukes, the anterior region was adorned with sharply pointed spines projecting away from the surface, while in the posterior region, spines become shorter and narrower, loosing serration and with the appearance of distinct furrows and papillae. The dorsal surface retained the same pattern of surface architecture similar to that of ventral surface. Flukes obtained from 24h post-treatment did not show any apparent change and were still very active. However, there were limited movements and some blebbing, swelling, deposition of tegumental secretions and some flattening displayed by the flukes of 48h post-treatment. All the worms were found dead 72h post-treatment and showed advanced level of tegumental disruptions, consisting of severe distortion of spines, sloughing off the tegument to expose the basal lamina, formation of pores and isolated patches of lesions. By 96h post-treatment, the disruption was extremely severe and the tegument was completely sheared off causing deeper lesions that exposed the underlying musculature. The disruption was more severe at posterior than anterior region and on ventral than dorsal surface. The present study further establishes the time-course of TCBZ action in vivo with 100% efficacy against the juvenile tropical liver fluke.
Resumo:
The use of apoptosis-inducing agents in the treatment of malignant cancer is increasingly being considered as a therapeutic approach. In this study, the induction of apoptosis and necrosis was examined in terms of temporal dose responses, comparing a malignant and nonmalignant breast cell line. Staurosporine (SSP)-induced apoptosis and H2O2-induced necrosis were evaluated by two cytotoxicity assays, neutral red (NR) and methyl-thiazolyl tertrazolium (MTT), in comparison with a differential dye uptake assay, using Hoechst33342/propidium iodide (Hoechst/PI). Confirmatory morphological assessment was also performed by routine resin histology and transmission electron microscopy. Cell viability was assessed over a 0.5-48 h time course. In nonmalignant HBL-100 cells, 50 nM SSP induced 100% apoptosis after a 48 h exposure, while the same exposure to SSP caused only 4% apoptosis in metastatic T47D cells. Although complete apoptosis of both cell lines was induced by 50 M SSP, this effect was delayed in T47D (24 h) compared with HBL-100 (4 h). Results also showed that neither MTT or NR can distinguish between the modes of cell death, nor detect the early onset of apoptosis revealed by Hoechst/PI.
Resumo:
1. Fast inward currents were elicited in freshly isolated sheep lymphatic smooth muscle cells by depolarization from a holding potential of -80 mV using the whole-cell patch-clamp technique. The currents activated at voltages positive to -40 mV and peaked at 0 mV. 2. When sodium chloride in the bathing solution was replaced isosmotically with choline chloride inward currents were abolished at all potentials. 3. These currents were very sensitive to tetrodotoxin (TTX). Peak current was almost abolished at 1 microM with half-maximal inhibition at 17 nM. 4. Examination of the voltage dependence of steady state inactivation showed that more than 90% of the current was available at the normal resting potential of these cells (-60 mV). 5. The time course of recovery from inactivation was studied using a double-pulse protocol and showed that recovery was complete within 100 ms with a time constant of recovery of 20 ms. 6. Under current clamp, action potentials were elicited by depolarizing current pulses. These had a rapid upstroke and a short duration and could be blocked with 1 microM TTX. 7. Spontaneous contractions of isolated rings of sheep mesenteric lymphatic vessels were abolished or significantly depressed by 1 microM TTX.
Resumo:
Reaching to visual targets engages the nervous system in a series of transformations between sensory information and motor commands. That which remains to be determined is the extent to which the processes that mediate sensorimotor adaptation to novel environments engage neural circuits that represent the required movement in joint-based or muscle-based coordinate systems. We sought to establish the contribution of these alternative representations to the process of visuomotor adaptation. To do so we applied a visuomotor rotation during a center-out isometric torque production task that involved flexion/extension and supination/pronation at the elbow-joint complex. In separate sessions, distinct half-quadrant rotations (i.e., 45°) were applied such that adaptation could be achieved either by only rescaling the individual joint torques (i.e., the visual target and torque target remained in the same quadrant) or by additionally requiring torque reversal at a contributing joint (i.e., the visual target and torque target were in different quadrants). Analysis of the time course of directional errors revealed that the degree of adaptation was lower (by ~20%) when reversals in the direction of joint torques were required. It has been established previously that in this task space, a transition between supination and pronation requires the engagement of a different set of muscle synergists, whereas in a transition between flexion and extension no such change is required. The additional observation that the initial level of adaptation was lower and the subsequent aftereffects were smaller, for trials that involved a pronation–supination transition than for those that involved a flexion–extension transition, supports the conclusion that the process of adaptation engaged, at least in part, neural circuits that represent the required motor output in a muscle-based coordinate system.
Resumo:
Minimal toxicity data are available for 1-alkylquinolinium bromide ionic liquids. Here, their toxicity to NIH 3T3 murine fibroblast cells, of relevance to their potential antimicrobial application, is presented. Toxicity data, presented by time-point analysis with a particular focus on the immediate toxicity upon short term cellular exposure, indicate a link between the length of the alkyl chain substituent and resultant biological toxicity. 1-Tetradecylquinolinium bromide was found to exhibit cellular toxicity comparable to benzalkonium chloride over all time points tested. By comparison, 1-octylquinolinium bromide initially exerted significantly lower cytotoxicity at one hour; however, toxicity was found to have a cumulative effect over time-course analysis up to three days. This illustrates that alkyl chain components may govern not only overall toxicity, but also the rate of toxicity. Fluorescence microscopy was utilised to examine destabilisation of the plasma membrane by 1 tetradecylquinolinium bromide and benzalkonium chloride after one hour, with membrane destabilisation not observed for 1-octylquinolinium bromide, or the base constituent quinoline.
Resumo:
One way to restore physiological blood flow to occluded arteries involves the deformation of plaque using an intravascular balloon and preventing elastic recoil using a stent. Angioplasty and stent implantation cause unphysiological loading of the arterial tissue, which may lead to tissue in-growth and reblockage; termed “restenosis.” In this paper, a computational methodology for predicting the time-course of restenosis is presented. Stress-induced damage, computed using a remaining life approach, stimulates inflammation (production of matrix degrading factors and growth stimuli). This, in turn, induces a change in smooth muscle cell phenotype from contractile (as exists in the quiescent tissue) to synthetic (as exists in the growing tissue). In this paper, smooth muscle cell activity (migration, proliferation, and differentiation) is simulated in a lattice using a stochastic approach to model individual cell activity. The inflammation equations are examined under simplified loading cases. The mechanobiological parameters of the model were estimated by calibrating the model response to the results of a balloon angioplasty study in humans. The simulation method was then used to simulate restenosis in a two dimensional model of a stented artery. Cell activity predictions were similar to those observed during neointimal hyperplasia, culminating in the growth of restenosis. Similar to experiment, the amount of neointima produced increased with the degree of expansion of the stent, and this relationship was found to be highly dependant on the prescribed inflammatory response. It was found that the duration of inflammation affected the amount of restenosis produced, and that this effect was most pronounced with large stent expansions. In conclusion, the paper shows that the arterial tissue response to mechanical stimulation can be predicted using a stochastic cell modeling approach, and that the simulation captures features of restenosis development observed with real stents. The modeling approach is proposed for application in three dimensional models of cardiovascular stenting procedures.
Resumo:
Transient outward rectifying conductances or A-like conductances in sympathetic preganglionic neurons (SPN) are prolonged, lasting for hundreds of milliseconds to seconds and are thought to play a key role in the regulation of SPN firing frequency. Here, a multidisciplinary electrophysiological, pharmacological and molecular single-cell rt-PCR approach was used to investigate the kinetics, pharmacological profile and putative K + channel subunits underlying the transient outward rectifying conductance expressed in SPN. SPN expressed a 4-aminopyridine (4-AP) sensitive transient outward rectification with significantly longer decay kinetics than reported for many other central neurons. The conductance and corresponding current in voltage-clamp conditions was also sensitive to the Kv4.2 and Kv4.3 blocker phrixotoxin-2 (1-10 µM) and the blocker of rapidly inactivating Kv channels, pandinotoxin-Ka (50 nM). The conductance and corresponding current was only weakly sensitive to the Kv1 channel blocker tityustoxin-Ka and insensitive to dendrotoxin I (200 nM) and the Kv3.4 channel blocker BDS-II (1 µM). Single-cell RT-PCR revealed mRNA expression for the a-subunits Kv4.1 and Kv4.3 in the majority and Kv1.5 in less than half of SPN. mRNA for accessory ß-subunits was detected for Kvß2 in all SPN with differential expression of mRNA for KChIP1, Kvß1 and Kvß3 and the peptidase homologue DPP6. These data together suggest that the transient outwardly rectifying conductance in SPN is mediated by members of the Kv4 subfamily (Kv4.1 and Kv4.3) in association with the ß-subunit Kvß2. Differential expression of the accessory ß subunits, which may act to modulate channel density and kinetics in SPN, may underlie the prolonged and variable time-course of this conductance in these neurons. © 2011 IBRO.
Resumo:
Voltage-sensitive ionic currents were identified and characterised in ventricular myocytes of the bivalve mollusc, Mytilus edulis, using the whole-cell patch-clamp technique. Two outward currents could be distinguished. A potassium A current (I-A) activated at - 30 mV from a holding potential of - 60 mV. This transient current was inactivated by holding the cells at a potential of - 40 mV and was also blocked by applying 4-aminopyridine (3 mM) to the external bath solution. A second current was identified as a delayed rectifier (I-K). This also activated at - 30 mV but exhibited a sustained time course and was still activated at a holding potential of - 40 mV. Both outward currents were reduced in the presence of tetraethylammonium ions (30 mM). A small number of heart cells also showed an inward sodium current (I-Na). This current appeared at potentials more positive than - 50 mV, reached a maximum at - 20 mV, and decreased with further depolarisation. I-Na was inactivated at a holding potential of - 40 mV and was blocked by tetrodotoxin (1 mu M). A second inward current had a sustained time course and was not inactivated by holding the cell at a potential of -40 mV, and was also not abolished by tetrodotoxin. This current peaked at 0 mV, decreasing with further depolarisation. Furthermore, it was enhanced by the addition of barium ions (3 mM) to the bath and was blocked by external cobalt (2 mM) or nifedipine (15 mu M) These findings are consistent with this being an L-type calcium current (I-Ca) The possible physiological roles of these currents in M. edulis heart are discussed. (C) 1999 Elsevier Science Inc. All rights reserved.
Resumo:
The effect of simulated hyperglycaemia on bovine retinal pericytes was studied following culture of these cells for 10 days under normal (5 mmol/l) and elevated (25 mmol/l) glucose conditions in the absence of endothelial cells. Pericytes cultured under high ambient glucose exhibited both a delayed and reduced contractile response following stimulation with endothelin-1. Stimulation with 10(-7) mol/l endothelin-1 for 30 s caused significant contraction in cells grown in both 5 mmol/l and 25 mmol/l glucose. The former also contracted significantly with 10(-8) mol/l endothelin-1. Further, at all concentrations tested, statistical comparison of the time course of contraction showed a significant difference (p 0.1) between bovine retinal pericytes grown for 10 days under normo- or hyperglycaemic conditions, it became apparent that the altered contractility in bovine retinal pericytes following culture in high glucose must be due to post-binding intracellular disturbance(s). Indeed, both basal and 15 s post-stimulation with 10(-8) mol/l endothelin-1, levels of inositol trisphosphate were significantly reduced (p
Resumo:
Gene targeting by microRNAs is important in health and disease. We developed a functional assay for identifying microRNA targets and applied it to the K+ channel Kir2.1 (KCNJ2) which is dysregulated in cardiac and vascular disorders. The 3'UTR was inserted downstream of the mCherry red fluorescent protein coding sequence in a mammalian expression plasmid. MicroRNA sequences were inserted into the pSM30 expression vector which provides enhanced green fluorescent protein as an indicator of microRNA expression. HEK293 cells were co-transfected with the mCherry-3'UTR plasmid and a pSM30-based plasmid with a microRNA insert. The principle of the assay is that functional targeting of the 3'UTR by the microRNA results in a decrease in the red/green fluorescence intensity ratio as determined by automated image analysis. The method was validated with miR-1, a known downregulator of Kir2.1 expression, and was used to investigate targeting of the Kir2.1 3'UTR by miR-212. Red/green ratio was lower in miR-212-expressing cells compared to non-targeting controls, an effect that was attenuated by mutating the predicted target site. MiR-212 also reduced inward rectifier current and Kir2.1 protein in HeLa cells. This novel assay has several advantages over traditional luciferase-based assays including larger sample size, amenability to time course studies and adaptability to high-throughput screening.
Resumo:
The effectiveness of nifedipine retard as a treatment for Raynaud's phenomenon was assessed in 15 patients in a placebo controlled double blind study. An associated connective tissue disease was evident in 7 patients. Changes in finger and forearm blood flow (venous occlusion plethysmography), digital skin temperature and digital systolic pressure were measured acutely before and after a 2-week treatment period. Subjective assessment of efficacy was based on patient diary data. In addition alpha 2-adrenoceptor density on platelets was measured before and after chronic nifedipine therapy in both the patient group and in an age-and-sex-matched control group. No significant haemodynamic changes were observed. Nifedipine retard significantly reduced the frequency (p less than 0.05) with no change in either the duration or severity of vasospastic attacks. Side effects were common following nifedipine retard. A reduction in alpha 2-adrenoceptor density on platelets was observed in patients compared to a control group (p less than 0.05). Alpha 2-adrenoceptor density was unchanged following a 2-week treatment period with nifedipine retard. This study concludes that nifedipine retard is not effective in the treatment of Raynaud's phenomenon over a short time course. Patients with Raynaud's phenomenon have reduced alpha 2-adrenoceptor densities on their platelets.
Resumo:
Some animals change their feeding behaviour when infected with parasites, seeking out substances that enhance their ability to overcome infection. This 'self-medication' is typically considered to involve the consumption of toxins, minerals or secondary compounds. However, recent studies have shown that macronutrients can influence the immune response and that pathogen-challenged individuals can self-medicate by choosing a diet rich in protein and low in carbohydrates. Infected individuals might also reduce food intake when infected (i.e. illness-induced anorexia). Here, we examine macronutrient self-medication and illness-induced anorexia in caterpillars of the African armyworm (Spodoptera exempta) by asking how individuals change their feeding decisions over the time course of infection with a baculovirus. We measured self-medication behaviour across several full-sib families to evaluate the plasticity of diet choice and underlying genetic variation. Larvae restricted to diets high in protein (P) and low in carbohydrate (C) were more likely to survive a virus challenge than those restricted to diets with a low P : C ratio. When allowed free choice, virus-challenged individuals chose a higher protein diet than controls. Individuals challenged with either a lethal or sublethal dose of virus increased the P : C ratio of their chosen diets. This was mostly due to a sharp decline in carbohydrate intake, rather than an increased intake of protein, reducing overall food intake, consistent with an illness-induced anorexic response. Over time the P : C ratio of the diet decreased until it matched that of controls. Our study provides the clearest evidence yet for dietary self-medication using macronutrients and shows that the temporal dynamics of feeding behaviour depends on the severity and stage of the infection. The strikingly similar behaviour shown by different families suggests that self-medication is phenotypically plastic and not a consequence of genetically based differences in diet choice between families. © 2013 British Ecological Society.
Resumo:
Purpose: Recent evidence suggests that neuroglial dysfunction and degeneration contributes to the etiology and progression of diabetic retinopathy. Advanced lipoxidation end products (ALEs) have been implicated in the pathology of various diseases, including diabetes and several neurodegenerative disorders. The purpose of the present study was to investigate the possible link between the accumulation of ALEs and neuroretinal changes in diabetic retinopathy.
Methods: Retinal sections obtained from diabetic rats and age-matched controls were processed for immunohistochemistry using antibodies against several well defined ALEs. In vitro experiments were also performed using a human Muller (Moorfields/Institute of Ophthalmology-Muller 1 [ MIO-M1]) glia cell line. Western blot analysis was used to measure the accumulation of the acrolein-derived ALE adduct N epsilon-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) in Muller cells preincubated with FDP-lysine-modified human serum albumin (FDP-lysine-HSA). Responses of Muller cells to FDP-lysine accumulation were investigated by analyzing changes in the protein expression of heme oxygenase-1 (HO-1), glial fibrillary acidic protein (GFAP), and the inwardly rectifying potassium channel Kir4.1. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF alpha) were determined by reverse transcriptase PCR (RT-PCR). Apoptotic cell death was evaluated by fluorescence-activated cell sorting (FACS) analysis after staining with fluorescein isothiocyanate (FITC)-labeled annexin V and propidium iodide.
Results: No significant differences in the levels of malondialdehyde-, 4-hydroxy-2-nonenal-, and 4-hydroxyhexenal-derived ALEs were evident between control and diabetic retinas after 4 months of diabetes. By contrast, FDP-lysine immunoreactivity was markedly increased in the Muller glia of diabetic rats. Time-course studies revealed that FDP-lysine initially accumulated within Muller glial end feet after only a few months of diabetes and thereafter spread distally throughout their inner radial processes. Exposure of human Muller glia to FDP-lysine-HSA led to a concentration-dependent accumulation of FDP-lysine-modified proteins across a broad molecular mass range. FDP-lysine accumulation was associated with the induction of HO-1, no change in GFAP, a decrease in protein levels of the potassium channel subunit Kir4.1, and upregulation of transcripts for VEGF, IL-6, and TNF-alpha. Incubation of Muller glia with FDP-lysine-HSA also caused apoptosis at high concentrations.
Conclusions: Collectively, these data strongly suggest that FDP-lysine accumulation could be a major factor contributing to the Muller glial abnormalities occurring in the early stages of diabetic retinopathy.
Resumo:
Interferon-alpha (IFN-alpha) therapy is commonly used in the treatment of neoplastic and autoimmune diseases, including cutaneous T cell lymphoma (CTCL). However, the IFN-alpha response is unpredictable, and the IFN-alpha cell targets and pathways are only partially understood. To delineate the molecular mechanisms of IFN-alpha activity, gene expression profiling was performed in a time-course experiment of both IFN-alpha sensitive and IFN-alpha-resistant variants of a CTCL cell line. These experiments revealed that IFN-alpha is responsible for the regulation of hundreds of genes in both variants and predominantly involves genes implicated in signal transduction, cell cycle control, apoptosis, and transcription regulation. Specifically, the IFN-alpha response of tumoral T cells is due to a combination of induction of apoptosis in which TNFSF10 and HSXIAPAF1 may play an important role and cell cycle arrest achieved by downregulation of CDK4 and CCNG2 and upregulation of CDKN2C and tumor suppressor genes (TSGs). Resistance to IFN-alpha appears to be associated with failure to induce IRF1 and IRF7 and deregulation of the apoptotic signals of HSXIAPAF1, TRADD, BAD, and BNIP3. Additionally, cell cycle progression is heralded by upregulation of CDC25A and CDC42. A critical role of NF-kappaB in promoting cell survival in IFN-alpha-resistant cells is indicated by the upregulation of RELB and LTB.