232 resultados para THREADED ALPHA-CYCLODEXTRINS
Resumo:
A series of supramolecular aggregates were prepared using a poly(propylene oxide) poly(ethylene oxide) poly(propylene oxide) (PPO-PEO-PPO) block copolymer and beta- or alpha-cyclodextrins (CD). The combination of beta-CD and the copolymer yields inclusion complexes (IC) with polypseudorotaxane structures. These are formed by complexation of the PPO blocks with beta-CD molecules producing a powder precipitate with a certain crystallinity degree that can be evaluated by X-ray diffraction (XRD). In contrast, when combining alpha-CD with the block copolymer, the observed effect is an increase in the viscosity of the mixtures, yielding fluid gels. Two cooperative effects come into play: the complexation of PEO blocks with alpha-CD and the hydrophobic interactions between PPO blocks in aqueous media. These two combined interactions lead to the formation of a macromoleculaf network. The resulting fluid gels were characterized using different techniques such as differential scanning calorimetry (DSC), viscometry, and XRD measurements.
Resumo:
Gels obtained by complexation of octablock star polyethylene oxide/polypropylene oxide copolymers (Tetronic 90R4) with -cyclodextrin (-CD) were evaluated as matrices for drug release. Both molecules are biocompatible so they can be potentially applied to drug delivery systems. Two different types of matrices of Tetronic 90R4 and -CD were evaluated: gels and tablets. These gels are capable to gelifying in situ and show sustained erosion kinetics in aqueous media. Tablets were prepared by freeze-drying and comprising the gels. Using these two different matrices, the release of two model molecules, L-tryptophan (Trp), and a protein, bovine serum albumin (BSA), was evaluated. The release profiles of these molecules from gels and tablets prove that they are suitable for sustained delivery. Mathematical models were applied to the release curves from tablets to elucidate the drug delivery mechanism. Good correlations were found for the fittings of the release curves to different equations. The results point that the release of Trp from different tablets is always governed by Fickian diffusion, whereas the release of BSA is governed by a combination of diffusion and tablet erosion.
Resumo:
Different types of gels were prepared by combining poloxamines (Tetronic), i.e. poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) octablock star copolymers, and cyclodextrins (CD). Two different poloxamines with the same molecular weight (ca. 7000) but different molecular architectures were used. For each of their four diblock arms, direct Tetronic 904 presents PEO outer blocks while in reverse Tetronic 90R4 the hydrophilic PEO blocks are the inner ones. These gels were prepared by combining alpha-CD and poloxamine aqueous solutions. The physicochemical properties of these systems depend on several factors such as the structure of the block copolymers and the Tetronic/alpha-CD ratio. These gels were characterized using differential scanning calorimetry (DSC), viscometry and X-ray diffraction measurements. The 90R4 gels present a consistency that makes them suitable for sustained drug delivery. The resulting gels were easily eroded: these complexes were dismantled when placed in a large amount of water, so controlled release of entrapped large molecules such as proteins (Bovine Serum Albumin, BSA) is feasible and can be tuned by varying the copolymer/CD ratio.
Resumo:
There is strong evidence for the involvement of alpha-synuclein in the pathologies of several neurodegenerative disorders, including PD (Parkinson's disease). Development of disease appears to be linked to processes that increase the rate at which alpha-synuclein forms aggregates. These processes include increased protein concentration (via either increased rate of synthesis or decreased rate of degradation), and altered forms of alpha-synuclein (such as truncations, missense mutations, or chemical modifications by oxidative reactions). Aggregated forms of the protein are toxic to cells and one therapeutic strategy would be to reduce the rate at which aggregation occurs. To this end we have designed several peptides that reduce alpha-synuclein aggregation. A cell-permeable version of one such peptide was able to inhibit the DNA damage induced by Fe(II) in neuronal cells transfected with alpha-synuclein (A53T), a familial PD-associated mutation.
Resumo:
Alpha-synuclein is a major component of Lewy bodies in Parkinson's disease and is found associated with several other forms of dementia. As with other neurodegenerative diseases, the ability of alpha-synuclein to aggregate and form fibrillar deposits seems central to its pathology. We have defined a sequence within the NAC region of alpha-synuclein that is necessary for aggregation. Exploitation of chemically modified analogues of this peptide may produce inhibitors of aggregation.
Resumo:
Alpha-synuclein has been linked to amyloidogenesis in Parkinson's disease and other neurodegenerative disorders. We have previously shown that a peptide comprising residues 68-78 of alpha-synuclein is the minimum fragment that, like alpha-synuclein itself, forms amyloid fibrils and exhibits toxicity towards cells in culture. Hughes et al. [J. Biol. Chem. 275 (2000) 25109] showed that an N-methylated derivative of Abeta(25-35) inhibited the formation of fibrils by Abeta(25-35) and reduced its toxicity. We have now extended this concept to an amyloidogenic alpha-synuclein-based peptide. Alpha-synuclein(68-78), N-methylated at G1y73, was compared to non-methylated peptide. Whereas alpha-synuclein(68-78) formed fibrils and was toxic to cells, the N-methylated analogue had neither of these properties. Moreover, an equimolar mixture of the non-methylated and methylated peptides formed very few fibrils and toxicity was markedly reduced.
Resumo:
Fibrillar deposits of alpha-synuclein occur in several neurodegenerative diseases. Two mutant forms of alpha-synuclein have been associated with early-onset Parkinson's disease, and a fragment has been identified as the non-amyloid-beta peptide component of Alzheimer's disease amyloid (NAC). Upon aging, solutions of alpha-synuclein and NAC change conformation to beta-sheet, detectable by CD spectroscopy, and form oligomers that deposit as amyloid-like fibrils, detectable by electron microscopy. These aged peptides are also neurotoxic. Experiments on fragments of NAC have enabled the region of NAC responsible for its aggregation and toxicity to be identified. NAC(8-18) is the smallest fragment that aggregates, as indicated by the concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. Fragments NAC(8-18) and NAC(8-16) are toxic, whereas NAC(12-18), NAC(9-16) and NAC(8-15) are not. Hence residues 8-16 of NAC comprise the region crucial for toxicity. Toxicity induced by alpha-synuclein, NAC and NAC(1-18) oligomers occurs via an apoptotic mechanism, possibly initiated by oxidative damage, since these peptides liberate hydroxyl radicals in the presence of iron. Molecules with anti-aggregational and/or antioxidant properties may therefore be potential therapeutic agents.
Resumo:
The liver preferentially secretes alpha-tocopherol into plasma under the control of the hepatic alpha-tocopherol transfer protein (alpha-TTP). alpha-TTP-null mice (Ttpa(-/-) mice) are vitamin E deficient, therefore were used for investigations of in vivo responses to sub-normal tissue alpha-tocopherol concentrations during inflammation. Increased basal oxidative stress in Ttpa(-/-) mice was documented by increased plasma lipid peroxidation, and superoxide production by bone marrow-derived neutrophils stimulated in vitro with phorbol 12-myristate 13-acetate. Lipopolysaccharide (LPS) injected intraperitoneally induced increases in lung and liver HO-1 and iNOS, as well as plasma NO(x) in Ttpa(+/+) mice. LPS induced more modest increases in these markers in Ttpa(-/-) mice, while more marked increases in plasma IL-10 and lung lavage TNF alpha were observed. Taken together, these results demonstrate that alpha-tocopherol is important for proper modulation of inflammatory responses and that sub-optimal alpha-tocopherol concentrations may derange inflammatory-immune responses.