58 resultados para THIRD MOLARS
Palaeobiology of an extinct Ice Age mammal: Stable isotope and cementum analysis of giant deer teeth
Resumo:
The extinct giant deer, Megaloceros giganteus, is among the largest and most famous of the cervids. Megaloceros remains have been uncovered across Europe and western Asia. but the highest concentrations come from Irish bogs and caves Although Megaloceros has enjoyed a great deal of attention over the centuries, paleobiological study has focused oil morphometric and distributional work until now. This paper presents quantitative data that have implications for understanding its sudden extirpation in western Europe during a period of global climate change approximately 10.600 C-14 years ago (ca 12,500 calendar years BP). We report here the first stable isotope analysis of giant deer teeth. which we combine with dental cementum accretion in order to document age, diet and life-history seasonality from birth until death Enamel delta C-13 and delta O-18 measured in the second and third molars from seven individual giant deer Suggest a grass and forbbased diet supplemented with browse in a deteriorating. possibly water-stressed, environment, and a season of birth around spring/early summer Cementurm data indicate that the ages of the specimens ranged from 6.5 to 14 years and that they possessed mature antlers by autumn, similar to extant cervids. In addition. the possibility for combining these two techniques in future mammalian paleoccological studies is considered. The data presented in this study imply that Megoloceros would have indeed been vulnerable to extirpation during the terminal Pleistocene in Ireland. and this information is relevant to understanding the broader pattern of its extinction.
Resumo:
Background: Mechanotransduction in the dental pulp is mediated by mechano-sensitive trigeminal afferents but accumulating evidence suggests odontoblasts also contribute to mechano-sensory functions of the pulp as evidenced by expression of TRP channels, calcium-activated potassium channels and TREK-1 potassium channels. Activation of these mechano-sensitive channels is considered critical for the mechanotransduction of fluid movement within dentinal tubules into electrical signals transmitted by the pulpal afferents to elicit tooth sensitivity and pain. Since tooth pain and sensitivity are potentiated by inflammation we hypothesise that the inflammatory cytokine TNF-α sensitizes odontoblast responses to mechanical stimuli. Objective: To investigate the effect of TNF-α on the response of odontblast-like cells to mechanical stimuli. Method: Odontoblast-like cells were derived from dental pulp cells of immature third molars as previously described (El-karim et al 20112011 Pain, 152, 2211-2223). Odontoblast response to mechanical stimuli (application of hypotonic solution) was determined using ratiometric calcium imaging. Cells were treated with TNF-α for either 24hrs or short application for 10 mins prior to calcium imaging. Result: Odontoblast-like cells responded to hypotonic solution (230 mOSM) by increase in cytoplasmic Ca2+ concentration [Ca+2]i that was reduced to near base line in the presence of the TRPV4 antagonist RN-1734. Incubation of odontoblast -like cells with TNFα for 24 hrs resulted in a significant increase in cytoplasmic Ca2+ concentration in response to hypotonic stimuli compared to untreated cells. Similar results were obtained when cells were treated with TNF-α for 10 mins prior to imaging. Conclusion: Both short and long term treatment of odontoblasts-like cells with TNF-α resulted in enhanced responses to mechanical stimuli mediated via TRPV4 channel suggesting a role for this channel in inflammatory dental pain.
Resumo:
Introduction: Ca2+ ion is an important intracellular messenger essential for the regulation of various cellular functions including proliferation, differentiation and apoptosis. Transient Receptor Potential (TRP) channels are calcium permeable cationic channels that play important role in regulation of free intracellular calcium ([Ca2+]i) in response to thermal, physical and chemical stimuli. Ca2+ signalling in human dental pulp stem cells (hDPSCs) and the ion channels regulating Ca2+ are largely not known. Objectives: Investigate changes in [Ca2+]i and determine the ion channels that regulate calcium signalling in hDPSCs. Methods: DPSCs were derived from immature third molars and cells less than passage 6 were used in all the experiments. Changes in [Ca2+]i were studied with Fura2 calcium imaging. RNA was extracted from DPSCs and a panel of TRP channel gene expression was determined by qPCR employing custom designed FAM TRP specific primers and probes (Roche, UK) and the Light Cycler 480 Probes Master (Roche). Results: hDPSCs express gene transcripts for all TRP families including TRPV1, V2, V4, TRPA1, TRPC3, TRPC5, TRPC6, TRPM3, TRPM7 and TRPP2. Stimulation of cells with appropriate TRP channel agonist induced increase in [Ca2+]i and similar responses were obtained when cell were mechanically stimulated by membrane stretch with application of hypotonic solution. Conclusion: TRP channels mediate calcium signalling in hDPSCs that merit further investigation.
Resumo:
Introduction: Accumulating evidence supports a role for odontoblasts in initiating tooth pain, however direct ionic mechanisms underlying dentine nociceptive function remain unclear. The transient receptor potential (TRP) ion channels are directly related to cellular mechanisms of nociception and thermo-sensitive function but their expression by human odontoblasts remains to be determined. Objectives: To investigate the expression and functionality of the thermo-sensitive TRP channels TRPV1, TRPV4, TRPM8 and TRPA1 in human odontoblasts. Methods: Human odontoblasts were derived from dental pulp of immature permanent third molars by explant method. Cell lysates of odontoblasts were subject to SDS- polyacrylamide gel electrophoresis and proteins were blotted onto nitrocellulose membranes. Blots were probed with primary antibodies to TRPA1, TRPM8, TRPV4 and TRPV1. Detection of bound primary antibodies was achieved using appropriate anti-species antibody conjugates and chemiluminescent substrates. Functionality of the channels was determined with Ca2+ microfluorimetry, where cells grown in cover slips and incubated with Fura 2AM prior to stimulation with capsaicin (TRPV1 agonist), 4 alpha-phorbol 12,13-didecanoate (4áPDD) (TRPV4 agonist), icilin (TRPA1 agonist) and menthol (TRPM8 agonist). Emitted fluorescence was measured and the fluorescence ratio (R) was calculated as F340/F380 to determine the level of [Ca2+]i. Results: Western blotting confirmed the molecular localisation of thermo-sensitive TRP channels in human odontoblasts. Functionality assays revealed increase in [Ca2+]i in response to capsacin, icillin, methanol and 4áPDD indicating functional expression of TRPV1, TRPA1, TRPM8 and TRPV4 respectively. Conclusions: Functional expression of thermo-sensitive TRP channels in human odontoblasts may indicate a crucial role for odontoblasts in thermally induced dental pain. (Supported by a Research Grant from the Royal College of Surgeons of Edinburgh)
Resumo:
The potential introduction of third party planning appeals in the UK as a result of the Human Rights Act 1998 has increased interest in those countries that have established third party appeal procedures. The closest of these is the Republic of Ireland, which has had a third party right of appeal since 1963. This paper describes the impact these appeals have had on planning in the Irish Republic by explaining the appeal process, describing past trends and providing background information on the parties that engage in third party appeals. An overall assessment of the Republic’s experience is given and the paper concludes with a few comparative remarks relating this to planning and rights discourse in the UK