187 resultados para Syring, Dick
Resumo:
Parasites can structure biological communities directly through population regulation and indirectly by processes such as apparent competition. However, the role of parasites in the process of biological invasion is less well understood and mechanisms of parasite mediation of predation among hosts are unclear. Mutual predation between native and invading species is an important factor in determining the outcome of invasions in freshwater amphipod communities. Here, we show that parasites mediate mutual intraguild predation among native and invading species and may thereby facilitate the invasion process. We find that the native amphipod Gammarus duebeni celticus is host to a microsporidian parasite, Pleistophora sp. (new species), with a frequency of infection of 0-90%. However, the parasite does not infect three invading species, G. tigrinus, G. pulex and Crangonyx pseudogracilis. In field and laboratory manipulations, we show that the parasite exhibits cryptic virulence: the parasite does not affect host fitness in single-species populations, but virulence becomes apparent when the native and invading species interact. That is, infection has no direct effect on G. d. celticus survivorship, size or fecundity; however, in mixed-species experiments, parasitized natives show a reduced capacity to prey on the smaller invading species and are more likely to be preyed upon by the largest invading species. Thus, by altering dominance relationships and hierarchies of mutual predation, parasitism strongly influences, and has the potential to change, the outcome of biological invasions.
Resumo:
With field, laboratory, and modeling approaches, we examined the interplay among habitat structure, intraguild predation (IGP), and parasitism in an ongoing species invasion. Native Gammarus duebeni celticus (Crustacea: Amphipoda) are often, but not always, replaced by the invader Gammarus pulex through differential IGP. The muscle-wasting microsporidian parasite Pleistophora mulleri infects the native but not the invader. We found a highly variable prevalence of P. mulleri in uninvaded rivers, with 0–91% of hosts parasitized per sample. In addition, unparasitized natives dominated fast-flowing riffle patches of river, whereas parasitized individuals dominated slower- flowing, pooled patches. We examined the survivorship of invader and native in single and mixed-species microcosms with high, intermediate, and zero parasite prevalence. G. pulex survivorship was high in all treatments, whereas G. duebeni subsp. celticus survivorship was significantly lower in the presence of the invader. Further, parasitized G. duebeni subsp. celticus experienced near-total elimination. Models of the species replacement process implied that parasite-enhanced IGP would make invasion by G. pulex more likely, regardless of habitat and parasite spatial structure. However, where heterogeneity in parasite prevalence creates a landscape of patches with different susceptibilities to invasion, G. pulex may succeed in cases where invasion would not be possible if patches were equivalent. The different responses of parasitized and unparasitized G. duebeni subsp. celticus to environmental heterogeneity potentially link landscape patterns to the success or failure of the invasion process.
Resumo:
In its freshwater amphipod host Gammarus duebeni celticus, the microsporidian parasite Pleistophora mulleri showed 23% transmission efficiency when uninfected individuals were fed infected tissue, but 0% transmission by water-borne and coprophagous routes. Cannibalism between unparasitised and parasitised individuals was significantly in favour of the former (37% compared to 0%). In addition, cannibalism between parasitised individuals was significantly higher than between unparasitised individuals (27% compared to 0%). Thus, parasitised individuals were more likely to be cannibalised by both unparasitised and parasitised individuals. We discuss the conflicting selective forces within this host/parasite relationship, the implications of parasite mediated cannibalism for host population structure and the impacts this may have on the wider aquatic community.
Resumo:
1. In a series of laboratory experiments, we assessed the predatory nature of the native Irish amphipod, Gammarus duebeni celticus, and the introduced G. pulex, towards the mayfly nymph Baetis rhodani. We also investigated alterations in microhabitat use and drift behaviour of B. rhodani in the presence of Gammarus, and indirect predatory interactions with juvenile Atlantic salmon, Salmo salar. 2. In trials with single predators and prey, B. rhodani survival was significantly lower when Gammarus were free to interact with nymphs as than when Gammarus were isolated from them. The invader G. pulex reduced the survival of B. rhodani more rapidly than did the native G. d. celticus. Both Gammarus spp. were active predators. 3. In `patch' experiments, B. rhodani survival was significantly lower both when G. pulex and G. d. celticus were present, although the effect of the two Gammarus species did not differ. Again, active predation of nymphs by Gammarus was observed. Significantly more nymphs occurred on the top and sides of a tile, and per capita drifts were significantly higher, when Gammarus were present. Baetis rhodani per capita drift was also significantly higher in the presence of the introduced G. pulex than with the native G. d. celticus. 4. Gammarus facilitated predation by salmon parr of B. rhodani by significantly increasing fish–nymph encounters on exposed gravel and in the drift. There were no differential effects of the two Gammarus spp. on fish –B. rhodani encounters or consumption. 5. We conclude that Gammarus as a predator can have lethal, nonlethal, direct and indirect effects in freshwaters. We stress the need for recognition of this predatory role when assigning Gammarus spp. to a `Functional Feeding Group'.
Diel variation in egg-laying by the freshwater fish louse Argulus foliaceus (Crustacea : Branchiura)
Resumo:
Removal of deposited eggs could be a useful control strategy for the damaging fish ectoparasite Argulus foliaceus, but focused control requires knowledge of egg-laying patterns. Here, we investigated diel changes in the egg-laying behaviour of a natural population of A. foliaceus. Data were collected from 17-28 May 2004. Days were divided into 3 time periods: 06:00-14:00, 14:00-22:00 and 22:00-06:00 h. Significantly more egg clutches were laid from 06:00-14:00 h than during the other 2 time periods, which were not significantly different from each other. Significantly more egg clutches per hour were laid during hours of daylight as compared to hours of darkness. Significantly more egg clutches were laid in the top 1 m of the water column than at the bottom, and this was consistent throughout all 3 time periods. It is suggested that the increase in egg-laying activity during daylight hours may be due to a higher motivation to search for hosts during the night and an increased ability to locate silhouetted egg-laying sites during the day. These data can provide information useful for egg removal and control strategies.
Resumo:
The European otter (Lutra lutra L.) has a highly specialised diet that is composed predominantly of fish. The current study investigates the percentage composition of food items in otter spraints collected in six river catchments in Northern Ireland in 1980 and again from the same locations in 2003. Spraints contained significantly more salmonids than any other prey item. The composition of spraints differed among catchments. More salmonids and three-spined stickleback (Gasterosteus aculeatus L.) were found in spraints from the Glens of Antrim, while spraints from the Lagan catchment had significantly more eel (Anguilla anguilla L.). There were significantly more spraints containing non-fish food items in 2003 compared with 1980. These non-fish items were insects, amphipods, birds, rats (Rattus norvegicus Berkenhout) and lagomorphs. Increased consumption of non-fish items was apparent in all but one of the river catchments. The mean diversity of spraint composition was significantly greater in 2003 than in 1980. Therefore, our findings indicate that otters have diversified their diet since 1980 and now eat more non-fish prey.