2 resultados para Synapomorphy
Resumo:
Two species of Osmundea Stackhouse (Rhodomelaceae, Rhodophyta) that occur in Atlantic Europe have been confused under the names Osmundea ramosissima (Oeder) Athanasiadis and Osmundea truncata (Kutzing) Nam et Maggs, regarded until now as a synonym of O. ramosissima, An epitype from its type locality (Stavanger, Norway) is selected for Osmundea ramosissima Athanasiadis, recognized here as a valid name for Fucus ramosissimus Oeder, nom. illeg. Details of vegetative and reproductive morphology of O. ramosissima are reported, based on material from France, the British Isles, and Helgoland. Osmundea ramosissima resembles other species of Osmundea in its vegetative axial segments with two pericentral cells and one trichoblast, spermatangial development from apical and epidermal cells (filament type), the formation of five pericentral cells in the procarp-bearing segment of the female trichoblast, and tetrasporangial production from random epidermal cells. Among the species of Osmundea, O. ramosissima is most similar to O. truncata. Both species have discoid holdfasts, secondary pit connections between epidermal cells, and cup-shaped spermatangial pits. They differ in that: (a) O. ramosissima lacks lenticular wail thickenings and refractive needle-like inclusions in medullary cells, both of which are present in O. truncata; (b) O. ramosissima has branched spermatangial filaments that terminate in a cluster of several cells, whereas in O. truncata the unbranched spermatangial filaments have a single large terminal sterile cell; and (c) cystocarps of O. ramosissima lack protuberant ostioles but ostioles are remarkably protuberant in o. truncata. Phylogenetic analyses of rbcL sequences of Laurencia obtusa (Hudson) Lamouroux and all five Atlantic European species of Osmundea, including the type species, strongly support the generic status of Osmundea. Osmundea ramosissima and O. truncata are closely related (5.2% sequence divergence) and form a well-supported clade sister to a clade consisting of O. pinnatifida (Hudson) Stack-house, O. osmunda Stackhouse and O. hybrida (A. P. de Candolle) Nam. The formation of secondary pit connections between epidermal cells is a synapomorphy for the O. ramosissima + O. truncata clade. The close relationship between species with cup-shaped spermatangial pits (Osmundea hybrida) and urn-shaped pits (Osmundea pinnatifida and Osmundea osmunda) shows that spermatangial pit shape is not an important phylogenetic character. Parsimony analysis of a morphological data set also supports the genus Osmundea but conflicts with the molecular trees in infrageneric relationships, placing O. hybrida basal within the Osmundea clade and grouping O. osmunda and O. pinnatifida but not O. truncata and O. ramosissima. A key to Osmundea species is presented.
Resumo:
Introduction: Chitons (Polyplacophora) are molluscs considered to have a simple nervous system without cephalisation. The position of the class within Mollusca is the topic of extensive debate and neuroanatomical characters can provide new sources of phylogenetic data as well as insights into the fundamental biology of the organisms. We report a new discrete anterior sensory structure in chitons, occurring throughout Lepidopleurida, the order of living chitons that retains plesiomorphic characteristics.
Results: The novel "Schwabe organ" is clearly visible on living animals as a pair of streaks of brown or purplish pigment on the roof of the pallial cavity, lateral to or partly covered by the mouth lappets. We describe the histology and ultrastructure of the anterior nervous system, including the Schwabe organ, in two lepidopleuran chitons using light and electron microscopy. The oesophageal nerve ring is greatly enlarged and displays ganglionic structure, with the neuropil surrounded by neural somata. The Schwabe organ is innervated by the lateral nerve cord, and dense bundles of nerve fibres running through the Schwabe organ epithelium are frequently surrounded by the pigment granules which characterise the organ. Basal cells projecting to the epithelial surface and cells bearing a large number of ciliary structures may be indicative of sensory function. The Schwabe organ is present in all genera within Lepidopleurida (and absent throughout Chitonida) and represents a novel anatomical synapomorphy of the clade.
Conclusions: The Schwabe organ is a pigmented sensory organ, found on the ventral surface of deep-sea and shallow water chitons; although its anatomy is well understood, its function remains unknown. The anterior commissure of the chiton oesophagial nerve ring can be considered a brain. Our thorough review of the chiton central nervous system, and particularly the sensory organs of the pallial cavity, provides a context to interpret neuroanatomical homology and assess this new sense organ.