3 resultados para Sydney harbour
Resumo:
Tide gauge data are identified as legacy data given the radical transition between observation method and required output format associated with tide gauges over the 20th-century. Observed water level variation through tide-gauge records is regarded as the only significant basis for determining recent historical variation (decade to century) in mean sea-level and storm surge. There are limited tide gauge records that cover the 20th century, such that the Belfast (UK) Harbour tide gauge would be a strategic long-term (110 years) record, if the full paper-based records (marigrams) were digitally restructured to allow for consistent data analysis. This paper presents the methodology of extracting a consistent time series of observed water levels from the 5 different Belfast Harbour tide gauges’ positions/machine types, starting late 1901. Tide-gauge data was digitally retrieved from the original analogue (daily) records by scanning the marigrams and then extracting the sequential tidal elevations with graph-line seeking software (Ungraph™). This automation of signal extraction allowed the full Belfast series to be retrieved quickly, relative to any manual x–y digitisation of the signal. Restructuring variably lengthed tidal data sets to a consistent daily, monthly and annual file format was undertaken by project-developed software: Merge&Convert and MergeHYD allow consistent water level sampling both at 60 min (past standard) and 10 min intervals, the latter enhancing surge measurement. Belfast tide-gauge data have been rectified, validated and quality controlled (IOC 2006 standards). The result is a consistent annual-based legacy data series for Belfast Harbour that includes over 2 million tidal-level data observations.
Resumo:
Identifying 20th-century periodic coastal surge variation is strategic for the 21st-century coastal surge estimates, as surge periodicities may amplify/reduce future MSL enhanced surge forecasts. Extreme coastal surge data from Belfast Harbour (UK) tide gauges are available for 1901–2010 and provide the potential for decadal-plus periodic coastal surge analysis. Annual extreme surge-elevation distributions (sampled every 10-min) are analysed using PCA and cluster analysis to decompose variation within- and between-years to assess similarity of years in terms of Surge Climate Types, and to establish significance of any transitions in Type occurrence over time using non-parametric Markov analysis. Annual extreme surge variation is shown to be periodically organised across the 20th century. Extreme surge magnitude and distribution show a number of significant cyclonic induced multi-annual (2, 3, 5 & 6 years) cycles, as well as dominant multi-decadal (15–25 years) cycles of variation superimposed on an 80 year fluctuation in atmospheric–oceanic variation across the North Atlantic (relative to NAO/AMO interaction). The top 30 extreme surge events show some relationship with NAO per se, given that 80% are associated with westerly dominant atmospheric flows (+ NAO), but there are 20% of the events associated with blocking air massess (− NAO). Although 20% of the top 30 ranked positive surges occurred within the last twenty years, there is no unequivocal evidence of recent acceleration in extreme surge magnitude related to other than the scale of natural periodic variation.