33 resultados para Surface coverage
Resumo:
The activities of different types of PtRu catalysts for methanol oxidation are compared. Materials used were: UHV-cleaned PtRu alloys, UHV-evaporated Ru onto Pt(111) as well as adsorbed Ru on Pt(111) prepared with and without additional reduction by hydrogen. Differences in the catalytic activity are observed to depend on the preparation procedure of the catalysts. The dependence of the respective catalytic activities upon the surface composition is reported. UHV-STM data for Pt(111)/Ru show the formation of two- and three-dimensional structures depending on surface coverage. A molecular insight on the electrochemical reaction is given via in situ infrared spectroscopy. Analysis of the data indicates that the most probable rate-determining step is the reaction of adsorbed CO with Ru oxide.
Resumo:
Fully quantitative analyses of DRIFTS data are required when the surface concentrations and the specific rate constants of reaction (or desorption) of adsorbates are needed to validate microkinetic models. The relationship between the surface coverage of adsorbates and various functions derived from the signal collected by DRIFTS is discussed here. The Kubelka-Munk and pseudoabsorbance (noted here as absorbance, for the sake of brevity) transformations were considered, since those are the most commonly used functions when data collected by DRIFTS are reported. Theoretical calculations and experimental evidence based on the study of CO adsorption on Pt/SiO2 and formate species adsorbed on Pt/CeO2 showed that the absorbance (i.e., ) log 1/R������¢, with R������¢ ) relative reflectance) is the most appropriate, yet imperfect, function to give a linear representation of the adsorbate surface concentration in the examples treated here, for which the relative reflectance R������¢ is typically > 60%. When the adsorbates lead to a strong signal absorption (e.g., R������¢ < 60%), the Kubelka-Munk function is actually more appropriate. The absorbance allows a simple correction of baseline drifts, which often occur during time-resolved data collection over catalytic materials. Baseline corrections are markedly more complex in the case of the other mathematical transforms, including the function proposed by Matyshak and Krylov (Catal. Today 1995, 25, 1-87), which has been proposed as an appropriate representation of surface concentrations in DRIFTS spectroscopy.
Resumo:
The present work investigates the reactivity of the surface species observable by in situ DRIFTS formed over a Pt/ZrO2 during the water-gas shift (WGS) reaction. A DRIFTS cell/mass spectrometer system was operated at the chemical steady state during isotopic transients to yield information about the true nature (i.e., main reaction intermediate or spectators) of adsorbates. Only carbonyl and formate species were observed by DRIFTS under reaction conditions; the surface coverage of carbonate species was negligible. Isotopic transient kinetic analyses revealed that formates exchanged uniformly according to a first-order law, suggesting that most formates observed by DRIFTS were of the same reactivity. In addition, the time scale of the exchange of the reaction product CO2 was significantly shorter than that of the surface formates. Therefore, a formate route based on the formates as detected by DRIFTS can be ruled out as the main reaction pathway in the present case. The number of precursors of the reaction product CO2 was smaller than the number of surface Pt atoms, suggesting that carbonyl species or some \
Resumo:
Ammonia synthesis on three metal surfaces (Zr, Ru, and Pd) is investigated using density functional theory calculations. In addition to N-2 dissociation, all the transition states of the hydrogenation reactions from N to NH3 are located and the reaction energy profiles at both low and high surface coverages are compared and analyzed. The following are found: (i) Surface coverage effect on dissociation reactions is more significant than that on association reactions. (ii) The difference between N and H chemisorption energies, the so-called chemisorption energy gap which is a measure of adsorption competition, is vital to the reactivity of the catalysts. (iii) The hydrogenation barriers can considerably affect the overall rate of ammonia synthesis. A simple model to describe the relationship between dissociation and association reactions is proposed. (c) 2007 American Institute of Physics.
Resumo:
Density functional theory has been used to study the adsorption of hydroxyl at low and high coverages and also to investigate the nature of the intermediate in the H2O formation reaction on Pt(111). At low coverages [1/9 of a monolayer (ML) to 1/3 ML] OH binds preferentially at bridge and top sites with a chemisorption energy of similar to2.25 eV. At high coverages (1/2 ML to 1 ML) H bonding between adjacent hydroxyls causes: (i) an enhancement in OH chemisorption energy by about 15%; (ii) a strong preference for OH adsorption at top sites; and (iii) the formation of OH networks. The activation energy for the diffusion of isolated OH groups along close packed rows of Pt atoms is 0.1 eV. This low barrier coupled with H bonding between neighboring OH groups indicates that hydroxyls are susceptible to island formation at low coverages. Pure OH as well as coadsorbed OH and H can be ruled out as the observed low temperature intermediate in the water formation reaction. Instead we suggest that the intermediate consists of a mixed OH+H2O overlayer with a macroscopic surface coverage of 3/4 ML in a 2:1 ratio of OH and H2O. (C) 2001 American Institute of Physics.
Resumo:
The adsorption behavior of C.I. Reactive Blue 2, C.I. Reactive Red 4, and C.I. Reactive Yellow 2 from aqueous solution onto activated carbon was investigated under various experimental conditions. The adsorption capacity of activated carbon for reactive dyes was found to be relatively high. At pH 7.0 and 298 K, the maximum adsorption capacity for C.I. Reactive Blue 2, C.I. Reactive Yellow 2 and C.I. Reactive Red 4 dyes was found to be 0.27, 0.24, and 0.11 mmol/g, respectively. The shape of the adsorption isotherms indicated an L2-type isotherm according to the Giles and Smith classification. The experimental adsorption data showed good correlation with the Langmuir and Ferundlich isotherm models. Further analysis indicated that the formation of a complete monolayer was not achieved, with the fraction of surface coverage found to be 0.45, 0.42, and 0.22 for C.I. Reactive Blue 2, C.I. Reactive Yellow 2 and C.I. Reactive Red 4 dyes, respectively. Experimental data indicated that the adsorption capacity of activated carbon for the dyes was higher in acidic rather than in basic solutions, and further indicated that the removal of dye increased with increase in the ionic strength of solution, this was attributed to aggregation of reactive dyes in solution. Thermodynamic studies indicated that the adsorption of reactive dyes onto activated carbon was an endothermic process. The adsorption enthalpy (?H) for C.I. Reactive Blue 2 and C.I. Reactive Yellow 2 dyes were calculated at 42.2 and 36.2 kJ/mol, respectively. The negative values of free energy (?G) determined for these systems indicated that adsorption of reactive dyes was spontaneous at the temperatures under investigation (298-328 K). © 2007 Elsevier Ltd. All rights reserved.
Resumo:
The syntheses of 2,2'-bipyridin-5-ylmethyl-5-(1,2-dithiolan-3-yl)pentanoate (L1) and N-(2,2'-bipyridin-5-ylmethyl)-5-(1,2-dithiolan-3-yl)pentanamide (L2) and their neutral fac carbonylrhenium(I) complexes [Re(L1)(CO)(3)Br] and [Re(L2)(CO)(3)Br] are reported. The. electronic absorption and emission spectra of the complexes are similar to the spectrum of the reference compound [Re(bipy)(CO)(3)Br] and correlate well with the density functional theory calculations undertaken. The surface-enhanced Raman spectroscopy (SERS) spectra (excited at both 532 and 785 nm) of the ligands and complexes were examined and compared to the spectrum of ethyl 5-(1,2-dithiolan-3-yl)pentanoate (L3), revealing that there is very little contribution to the spectra of these species from the dithiolated alkyl chains. The spectra are dominated by the characteristic peaks of a metalated 2,2'-bipyridyl group,arising from the silver colloid/ion complexation, and the rhenium center. The rhenium complexes show weak SERS bands related to the CO stretches and a broad band at 510 cm(-1) assigned to Re-CO stretching. Concentration dependent studies, measured by the relative intensity of several assigned peaks, indicate that, as the surface coverage increases, the bipyridine moiety lifts off the surface In the case of L1 and L2, this gives rise to complexes with silver at low concentration, enhancing the signals observed, while for the tricarbonylbromorhenium complexes of these ligands, the presence of the disulfide tether allows an enhancement in the limits of detection of these surface-borne species of 20 times in the case of [ReL2(CO)(3)Br] over [Re(bipy)(CO)(3)Br].
Resumo:
The role of gaseous NO and C3H8 has been studied over low-exchanged Cu-ZSM-5 zeolite employing TPD, FTIR and pulse technique with the alternate introduction of NO or C3H8 onto the catalyst surface. The rate of the N-2 formation is directly proportional to the content of gaseous NO and the surface coverage with 2-nitrosopropane. There was no formation of N-2 during interaction of gaseous C3H8 with NO adsorbates. However, 2-nitrosopropane and its isomer acetone oxime were also formed in this reaction.
Resumo:
Atmospheric pressure chemical vapour deposition of titanium dioxide coatings on glass substrates was achieved by the reaction of TiCl4 and a co-oxygen source (MeOH, EtOH, (PrOH)-Pr-i or H2O) at 500-650degreesC. The coatings show excellent uniformity, surface coverage and adherence. Growth rates were of the order of 0.3 mum min(-1) at 500degreesC. All films are crystalline and single phase with XRD showing the anatase TiO2 diffraction pattern; a = 3.78(1), c = 9.51(1) Angstrom. Optically, the films show minimal reflectivity from 300-1600 nm and 50-80% total transmission from 300-800 nm. Contact angles are in the range 20-40degrees for as-prepared films and 1-10degrees after 30 min irradiation at 254 nm. All of the films show significant photocatalyic activity as regards the destruction of an overlayer of stearic acid.
Resumo:
Proteins and humic acids are common constituents of waste water. Latex colloids (colloids) acted as surrogates for microorganisms in multiple pulse dynamic column experiments (MPEs) that permitted colloid mobility to be quantified before and after the injection of either BSA (a protein), or Suwannee River humic acid (SRHA).
At low OM coverage colloid breakthrough curves demonstrated both BSA and SRHA reduced colloid deposition rates, but did not affect colloid irreversible deposition mechanisms. By contrast, high levels of SRHA surface coverage not only further reduced the matrix’s ability to attenuate colloids, but also resulted in reversible adsorption of a significant fraction of colloids deposited. Modelling of colloid responses using random sequential adsorption modelling suggested that 1 microgram of SRHA had the same effect as the deposition of 5.90±0.14 x109 colloids; the model suggested that adsorption of the same mass of BSA was equivalent to the deposition of between 7.1x108 and 2.3x109 colloids.
Colloid responses in MPEs where BSA coverage of colloid deposition sites approached saturation demonstrated the sand matrix remained capable of adsorbing colloids. However, in contrast to responses observed in MPEs at low surface coverage, continued colloid injection showed that the sand’s attenuation capacity increased with time, i.e. colloid concentrations declined as more were deposited (filter ripening).
Importance: Study results highlight the contrasting responses that may arise due to the interactions between colloids and OM in porous media. Results not only underscore that colloids can interact differently with various forms of deposited OM, but also that a single type of OM may generate dramatically different responses depending on the degree of surface coverage. The MPE method provides a means of quantifying the influence of OM on microorganism mobility in porous media such as filter beds, which may be used for either drinking water treatment or waste water treatment. In the wider environment study findings have potential to allow more confident predictions of the mobility of sewage derived pathogens discharging to groundwater.
Resumo:
There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.
Resumo:
PtRuO/Ti anodes with a varying Pt:Ru ratio were prepared by thermal deposition of a PtRuO catalyst layer onto a Ti mesh for the direct methanol fuel cell (DMFC). The morphology and structure of the catalyst layers were analyzed by SEM, EDX, and XRD. The catalyst coating layers became porous with increase of the Ru content, and showed oxide and alloy characteristics. The relative activities of the PtRuO/Ti electrodes were assessed and compared using half-cell tests and single DMFC experiments. The results showed that these electrodes were very active for the methanol oxidation and that the optimum Ru surface coverage was ca. 38% for a DMFC operating at 20-60 °C. © 2006 Elsevier B.V. All rights reserved.
Resumo:
PtRu/Ti anodes with varying Pt : Ru ratio were prepared by electrodeposition of a thin PtRu catalyst layer onto Ti mesh for a direct methanol fuel cell (DMFC). The morphology and structure of the catalyst layers were analyzed by SEM, EDX and XRD. The catalyst coating layer shows an alloy character. The relative activities of the PtRu/Ti electrodes were assessed and compared in half cell and single DMFC experiments. The results show that these electrodes are very active for the methanol oxidation and that the optimum Ru surface coverage was ca. 9 at.% for DMFC operating at 20°C and 11 at.% at 60°C. The PtRu/Ti anode shows a performance comparable to that of the conventional carbon-based anode in a DMFC operating with 0.25 M or 0.5 M methanol solution and atmosphere oxygen gas at 90°C. © the Owner Societies 2006.
Resumo:
The crucial roles of the coverage of surface free sites in determining catalytic activity trend are quantitatively addressed with the help of density functional theory and microkinetics. First, by analyzing activity trends of NO oxidation catalyzed by Ru, Rh, Pd, Os, Ir, and Pt surfaces with full kinetic considerations, we identify that the activity trend is in general determined by the competition between the reaction barrier and the coverage of surface free sites. Second, since the dissociation of many important molecules, such as the dissociation of N(2), O(2), and CO, follows the same Bronsted-Evans-Polanyi relationship, the coverage of surface free sites is usually a decisive term that affects the overall activity. Third, an equation is derived for the coverage of surface free sites and it is found that the coverage of surface free sites contains not only all the key thermodynamic parameters but also all the kinetic properties in the catalytic system. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3140202]
Resumo:
The ground state potential energy surface for CO chemisorption across Pd{110} has been calculated using density functional theory with gradient corrections at monolayer coverage. The most stable site corresponds well with the experimental adsorption heat, and it is found that the strength of binding to sites is in the following order: pseudo-short-bridge>atop>long-bridge>hollow. Pathways and transition states for CO surface diffusion, involving a correlation between translation and orientation, are proposed and discussed. (C) 1997 American Institute of Physics.