148 resultados para Surface Plasmon Resonance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection of paralytic shellfish poisoning (PSP) toxins in contaminated shellfish is essential for human health preservation. Ethical and technical reasons have prompted the search for new detection procedures as an alternative to the mouse bioassay. On the basis of the detection of molecular interactions by surface plasmon resonance (SPR) biosensors, an inhibition assay was developed using an anti-GTX2/3 antibody (GT13-A) and a saxitoxin-CM5 chip. This assay allowed for quantification of saxitoxin (STX), decarbamoyl saxitoxin (dcSTX), gonyautoxin 2,3 (GTX2/3), decarbamoyl gonyautoxin 2,3 (dcGTX2/3), gonyautoxin 5 (GTX5), and C 1,2 (C1/2) at concentrations from 2 to 50 ng/mL. The interference of five shellfish matrixes with the inhibition assay was analyzed. Mussels, clams, cockles, scallops, and oysters were extracted with five published methods. Ethanol extracts and acetic acid/heat extracts (AOAC Lawrence method) performed adequately in terms of surface regeneration and baseline interference, did not inhibit antibody binding to the chip surface significantly, and presented STX calibration curves similar to buffer controls in all matrixes tested. Hydrochloric acid/heat extracts (AOAC mouse bioassay method) presented surface regeneration problems, and although ethanol-acetic acid/dichloromethane extracts performed well, they were considered too laborious for routine sample testing. Overall the best results were obtained with the ethanol extraction method with calibration curves prepared in blank matrix extracts. STX recovery rate with the ethanol extraction method was 60.52 ± 3.72%, with variations among species. The performance of this biosensor assay in natural samples, compared to two AOAC methods for PSP toxin quantification (mouse bioassay and HPLC), suggests that this technology can be useful as a PSP screening assay. In summary, the GT13-A-STX chip inhibition assay is capable of PSP toxin detection in ethanol shellfish extracts, with sufficient sensitivity to quantify the toxin in the range of the European regulatory limit of 80 g/100 g of shellfish meat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid and sensitive screening qualitative method using a surface plasmon resonance (SPR) biosensor was developed which can detect of all fenicol antibiotic residues in shrimps from a single sample extract. This method requires ethyl acetate extraction followed by a single wash with isooctane/chlorofonrm. Each sample extract is injected over the surfaces of two biosensor chip flow cells, one surface having the capability to detect florefenicol amine (FF amine), florefenicol (FF), and thiamphenicol (TAP) and the second surface for chloramphenicol (CAP) detection. The estimated detection capabilities (CC beta) were 0. 1, 0.2, 250, and 0.5 ppb for CAP, FF, FF amine, and TAP, respectively. This quick, simple test allowed the detection of CAP residues in shrimps at the minimum required performance limit (MRPL) of 0.1 mu g kg(-1) for this compound and of FF, FF amine, and TAP below their maximum residue limits (MRLs). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid screening assay (9 min/sample) has been developed and validated for the detection of deoxynivalenol in durum wheat, wheat products, and maize-based baby foods using an SPA biosensor. Through a single laboratory validation, the limits of detection (LOD) for wheat, wheat-based breakfast cereal, and maize-based baby food were 57, 9, and 6 mu g/kg, respectively. Intra-assay and interassay precisions were calculated for each matrix at the maximum and half-maximum European Union regulatory limits and expressed as the coefficient of variation (CV). All CVs fell below 10% with the exception of the between-run CV for breakfast cereal. Recoveries at the concentrations tested ranged from 92 to 115% for all matrices. Action limits of 161, 348, and 1378 mu g/kg were calculated for baby food, wheat-based breakfast cereal, and wheat, respectively, and the linear range of the assay was determined as 250-2000 mu g/kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A research element of the European Union (EU) sixth Framework project BioCop focused on the development of a surface plasmon resonance (SPR) biosensor assay for the detection of paralytic shellfish poisoning (PSP) toxins in shellfish as an alternative to the increasingly ethically unacceptable mouse bioassay. A biosensor assay was developed using both a saxitoxin binding protein and chip surface in tandem with a highly efficient simple extraction procedure. The present report describes the single laboratory validation of this immunological screening method, for this complex group of toxins with differing toxicities, according to the European Decision 2002/657/EC in conjunction with IUPAC and AOAC single laboratory validation guidelines. The different performance characteristics (detection capability CC beta, specificity/selectivity, repeatability, reproducibility, stability, and applicability) were determined in relation to the EU regulatory limit of 800 mu g of saxitoxin equivalents (STX eq) per kg of shellfish meat. The detection capability CC beta was calculated to be 120 mu g/kg. Intra-assay repeatability was found to be between 2.5 and 12.3% and interassay reproducibility was between 6.1 and 15.2% for different shellfish matrices. Natural samples were also evaluated and the resultant data displayed overall agreements of 96 and 92% with that of the existing AOAC approved methods of mouse bioassay (MBA) and high performance liquid chromatography (HPLC), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential for coupling technologies to deliver new, improved forms of bioanalysis is still in its infancy. We review a number of examples in which coupling has been successful, with special emphasis on combining surface-plasmon-resonance biosensors with mass spectrometry. We give an overview of current progress towards combining biosensor-based bioanalysis with chemical analysis for confirmation of paralytic shellfish poisons that are marine toxins. This comprehensive approach could be an alternative to the official methods currently used (e.g., animal testing and high-performance liquid chromatography with fluorescence detection) and could serve as a model for many more such applications. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing demand to develop biosensor monitoring devices capable of biomarker profiling for predicting animal adulteration and detecting multiple chemical contaminants or toxins in food produce. Surface plasmon resonance (SPR) biosensors are label free detection systems that monitor the binding of specific biomolecular recognition elements with binding partners. Essential to this technology are the production of biochips where a selected binding partner, antibody, biomarker protein or low molecular weight contaminant, is immobilised. A micro-fluidic immobilisation device allowing the covalent attachment of up to 16 binding partners in a linear array on a single surface has been developed for compatibility with a prototype multiplex SPR analyser.

The immobilisation unit and multiplex SPR analyser were respectively evaluated in their ability to be fit-for-purpose for binding partner attachment and detection of high and low molecular weight molecules. The multiplexing capability of the dual technology was assessed using phycotoxin concentration analysis as a model system. The parent compounds of four toxin groups were immobilised within a single chip format and calibration curves were achieved. The chip design and SPR technology allowed the compartmentalisation of the binding interactions for each toxin group offering the added benefit of being able to distinguish between toxin families and perform concentration analysis. This model is particularly contemporary with the current drive to replace biological methods for phycotoxin screening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paralytic shellfish poisoning (PSP) toxins are produced by certain marine dinoflagellates and may accumulate in bivalve molluscs through filter feeding. The Mouse Bioassay (MBA) is the internationally recognised reference method of analysis, but it is prone to technical difficulties and regarded with increasing disapproval due to ethical reasons. As such, alternative methods are required. A rapid surface plasmon resonance (SPR) biosensor inhibition assay was developed to detect PSP toxins in shellfish by employing a saxitoxin polyclonal antibody (R895). Using an assay developed for and validated on the Biacore Q biosensor system, this project focused on transferring the assay to a high-throughput, Biacore T100 biosensor in another laboratory. This was achieved using a prototype PSP toxin kit and recommended assay parameters based on the Biacore Q method. A monoclonal antibody (GT13A) was also assessed. Even though these two instruments are based on SPR principles, they vary widely in their mode of operation including differences in the integrated mu-fluidic cartridges, autosampler system, and sensor chip compatibilities. Shellfish samples (n = 60), extracted using a simple, rapid procedure, were analysed using each platform, and results were compared to AOAC high performance liquid chromatography (HPLC) and MBA methods. The overall agreement, based on statistical 2 x 2 comparison tables, between each method ranged from 85% to 94.4% using R895 and 77.8% to 100% using GT13A. The results demonstrated that the antibody based assays with high sensitivity and broad specificity to PSP toxins can be applied to different biosensor platforms. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saxitoxin and its analogs, the causative agents of paralytic shellfish poisoning (PSP), are a worldwide threat to seafood safety. Effective monitoring of potentially contaminated fishing areas as well as screening of seafood samples is necessary to adequately protect the public. While many analytical methods exist for detecting paralytic shellfish toxins (PSTs), each technique has challenges associated with routine use. One recently developed method [1] that overcomes ethical or performance-related issues of other techniques is the surface plasmon resonance (SPR) bioassay. Notwithstanding the advantages of this method, much research remains in optimizing the sensor substrate and assay conditions to create a robust technique for rapid and sensitive measurement of PSTs. This manuscript describes a more rigorous and stable SPR inhibition immunoassay through optimization of the surface chemistry as well as determination of optimum mixture ratios and mixing times. The final system provides rapid substrate formation (18 h saxitoxin conjugation with low reagent consumption), contains a reference channel for each assay, and is capable of triplicate measurements in a single run with detection limits well below the regulatory action level. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A surface plasmon resonance (SPR) optical biosensor method was developed for the detection of paralytic shellfish poisoning (PSP) toxins in shellfish. This application was transferred in the form of a prototype kit to seven laboratories using Biacore QSPR optical biosensor instrumentation for interlaboratory evaluation. Each laboratory received 20 shellfish samples across a range of species including blind duplicates for analysis. The samples consisted of 4 noncontaminated samples spiked in duplicate with a low level of PSP toxins (240 mu g STXcliHCl equivalents/kg), a high level of saxitoxin (825 mu g STXdiHCl/kg), 2 noncontarninated, and 14 naturally contaminated samples. All 7 participating laboratories completed the study, and HorRat values obtained were