19 resultados para Strontium bismuth niobate
Resumo:
Experimental studies are reported concerning the importance of interfacial capacitance (including electrode screening, space-charge layers, and/or chemically discrete dead layers). on domain switching behaviour in thin films of ferroelectric lead zirconate-titanate (PZT), strontium bismuth tantalate (SBT), and barium strontium titanate (BST). Emphasis is placed upon studies at applied field values very near the coercive field E, asymmetry in fatigue for positive and negative polarity coercive fields, and in the case of BST, of the coexistence of ferroelectric and paraelectric phases Studies of dielectric loss show important correlations between tan 6 and fatigue (polarization decrease) as a function of bipolar switching cycles N. This is a priori not obvious, since the former is a linear response and the latter, a nonlinear response. Modelling of enlarged interfacial,space-charge layers in PZT films and chemically distinct dead (paraelectric) layers in BST films shows contradictory tendencies of coercive-voltage changes with the growth of passive layers.
Resumo:
We have conducted a broad survey of switching behavior in thin films of a range of ferroelectric materials, including some materials that are not typically considered for FeRAM applications, and are hence less studied. The materials studied include: strontium bismuth tantalate (SBT), barium strontium titanate (BST), lead zicronate titanate (PZT), and potassium nitrate (KNO3). Switching in ferroelectric thin films is typically considered to occur by domain nucleation and growth. We discuss two models of frequency dependence of coercive field, the Ishisbashi-Orihara theory where the limiting step is domain growth and the model of Du and Chen where the limiting step is nucleation. While both models fit the data fairly well the temperature dependence of our results on PZT and BST suggest that the nucleation model of Du and Chen is more appropriate for the experimental results that we have obtained.
Resumo:
Embrittlement by the segregation of impurity elements to grain boundaries is one of a small number of phenomena that can lead to metallurgical failure by fast fracture(1). Here we settle a question that has been debated for over a hundred years(2): how can minute traces of bismuth in copper cause this ductile metal to fail in a brittle manner? Three hypotheses for Bi embrittlement of Cu exist: two assign an electronic effect to either a strengthening(3) or weakening(4) of bonds, the third postulates a simple atomic size effect(5). Here we report first principles quantum mechanical calculations that allow us to reject the electronic hypotheses, while supporting a size effect. We show that upon segregation to the grain boundary, the large Bi atoms weaken the interatomic bonding by pushing apart the Cu atoms at the interface. The resolution of the mechanism underlying grain boundary weakening should be relevant for all cases of embrittlement by oversize impurities.
Resumo:
The functional properties of two types of barium strontium titanate (BST) thin film capacitor structures were studied: one set of structures was made using pulsed-laser deposition (PLD) and the other using chemical solution deposition. While initial observations on PLD films looking at the behavior of T-m (the temperature at which the maximum dielectric constant was observed) and T-c(*) (from Curie-Weiss analysis) suggested that the paraelectric-ferroelectric phase transition was progressively depressed in temperature as BST film thickness was reduced, further work suggested that this was not the case. Rather, it appears that the temperatures at which phase transitions occur in the thin films are independent of film thickness. Further, the fact that in many cases three transitions are observable, suggests that the sequence of symmetry transitions that occur in the thin films are the same as in bulk single crystals. This new observation could have implications for the validity of the theoretically produced thin film phase diagrams derived by Pertsev [Phys. Rev. Lett. 80, 1988 (1998)] and extended by Ban and Alpay [J. Appl. Phys. 91, 9288 (2002)]. In addition, the fact that T-m measured for virgin films does not correlate well with the inherent phase transition behavior, suggests that the use of T-m alone to infer information about the thermodynamics of thin film capacitor behavior, may not be sufficient. (C) 2004 American Institute of Physics.
Resumo:
This paper shows that penetration of the applied electric field into the electrodes of a ferroelectric thin film capacitor produces both an interfacial capacitance and an effective mechanism for electron tunneling. The model predictions are compared with experimental results on Au-BST-SrRuO3 capacitors of varying thicknesses, and the agreement is excellent.
Resumo:
Classification of the active surface sites of platinum catalysts responsible for low temperature N2O decomposition, in terms of steps, kinks and terraces, has been achieved by controlled addition of bismuth to as-received platinum/graphite catalysts.
Resumo:
The phase instability of bismuth perovskite (BiMO3), where M is a ferromagnetic cation, is exploited to create self-assembled magnetic oxide nanocrystal arrays on oxide supports. Conditions during pulsed laser deposition are tuned so as to induce complete breakdown of the perovskite precursor into bismuth oxide (Bi2 O3 ) and metal oxide (M-Ox ) pockets. Subsequent cooling in vacuum volatizes the Bi2 O3 leaving behind an array of monodisperse nanocrystals. In situ reflective high energy electron diffraction beam is exploited to monitor the synthesis in real-time. Analysis of the patterns confi rms the phase separation and volatization process. Successful synthesis of M-Ox, where M = Mn, Fe, Co, and Cr, is shown using this template-free facile approach. Detailed magnetic characterization of nanocrystals is carried out to reveal the functionalities such as magnetic anisotropy as well as larger than bulk moments, as expected in these oxide nanostructures.
Resumo:
Multiferroicity can be induced in strontium titanate by applying biaxial strain. Using optical second harmonic generation, we report a transition from 4/mmm to the ferroelectric mm2 phase, followed by a transition to a ferroelastic-ferroelectric mm2 phase in a strontium titanate thin film. Piezoelectric force microscopy is used to study ferroelectric domain switching. Second harmonic generation, combined with phase-field modeling, is used to reveal the mechanism of coupled ferroelectric-ferroelastic domain wall motion. These studies have relevance to multiferroics with coupled polar and axial phenomena.
Resumo:
The magnetoelectric coupling in multiferroic materials is promising for a wide range of applications, yet manipulating magnetic ordering by electric field proves elusive to obtain and difficult to control. In this paper, we explore the prospect of controlling magnetic ordering in misfit strained bismuth ferrite (BiFeO3, BFO) films, combining theoretical analysis, numerical simulations, and experimental characterizations. Electric field induced transformation from a tetragonal phase to a distorted rhombohedral one in strain engineered BFO films has been identified by thermodynamic analysis, and realized by scanning probe microscopy (SPM) experiment. By breaking the rotational symmetry of a tip-induced electric field as suggested by phase field simulation, the morphology of distorted rhombohedral variants has been delicately controlled and regulated. Such capabilities enable nanoscale control of magnetoelectric coupling in strain engineered BFO films that is difficult to achieve otherwise, as demonstrated by phase field simulations.