63 resultados para Strains and stresses Testing
Resumo:
We examined the relationship between Individualism/Collectivism and generalized social trust across 31 European nations participating in the European Social Survey. Using multi-level regression analyses, the current study provides the first empirical investigation of the effects of cultural norms of Individualism/Collectivism on generalized social trust while accounting for individuals' own cultural orientations within the same analysis. The results provide clear support for Yamagishi and Yamagishi (1994) emancipation theory of trust, showing a significant and positive relationship between Individualism/Collectivism and generalized social trust, over and above the effect of a country political history of communism and ethnic heterogeneity. Having controlled for individual effects of Individualism/Collectivism it is clear that the results of the current analysis cannot be reduced to an individual-level explanation, but must be interpreted within the context Of macrosocial processes. We conclude by discussing potential mechanisms that could explain why national individualism is more likely to foster trust among people than collectivism.
Resumo:
One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In two experiments, we tested some of the central claims of the empathizing-systemizing (E-S) theory. Experiment 1 showed that the systemizing quotient (SQ) was unrelated to performance on a mathematics test, although it was correlated with statistics-related attitudes, self-efficacy, and anxiety. In Experiment 2, systemizing skills, and gender differences in these skills, were more strongly related to spatial thinking styles than to SQ. In fact, when we partialled the effect of spatial thinking styles, SQ was no longer related to systemizing skills. Additionally, there was no relationship between the Autism Spectrum Quotient (AQ) and the SQ, or skills and interest in mathematics and mechanical reasoning. We discuss the implications of our findings for the E-S theory, and for understanding the autistic cognitive profile.
Resumo:
Fiber-reinforced polymer (FRP) hollow tubes are used in structural applications, such as utility poles and pipelines. Concrete-filled FRP tubes (CFFTs) are also used as piles and bridge piers. Applications such as poles and marine piles are typically governed by cyclic bending. In this paper, the fatigue behavior of glass-FRP filament-wound tubes is studied using coupons cut from the tubes. Several coupon configurations were first examined in 24 tension and five compression monotonic loading tests. Fatigue tests were then conducted on 81 coupons to examine several parameters; namely, loading frequency as well as maximum-to-ultimate (max ult) and minimum-to-maximum (min max) stress ratios, including tension tension and tension compression, to simulate reversed bending. The study demonstrated the sensitivity of test results and failure mode to coupon configuration. The presence of compression loads reduced fatigue life, while increasing load frequency increased fatigue life. Stiffness degradation behavior was also established. To achieve at least one million cycles, it is recommended to limit (max ult) to 0.25. Models were used to simulate stiffness degradation and fatigue life curve of the tube. Fatigue life predictions of large CFFT beams showed good correlation with experimental results. © 2008 ASCE.
Resumo:
Invasion ecology urgently requires predictive methodologies that can forecast the ecological impacts of existing, emerging and potential invasive species. We argue that many ecologically damaging invaders are characterised by their more efficient use of resources. Consequently, comparison of the classical ‘functional response’ (relationship between resource use and availability) between invasive and trophically analogous native species may allow prediction of invader ecological impact. We review the utility of species trait comparisons and the history and context of the use of functional responses in invasion ecology, then present our framework for the use of comparative functional responses. We show that functional response analyses, by describing the resource use of species over a range of resource availabilities, avoids many pitfalls of ‘snapshot’ assessments of resource use. Our framework demonstrates how comparisons of invader and native functional responses, within and between Type II and III functional responses, allow testing of the likely population-level outcomes of invasions for affected species. Furthermore, we describe how recent studies support the predictive capacity of this method; for example, the invasive ‘bloody red shrimp’ Hemimysis anomala shows higher Type II functional responses than native mysids and this corroborates, and could have predicted, actual invader impacts in the field. The comparative functional response method can also be used to examine differences in the impact of two or more invaders, two or more populations of the same invader, and the abiotic (e.g. temperature) and biotic (e.g. parasitism) context-dependencies of invader impacts. Our framework may also address the previous lack of rigour in testing major hypotheses in invasion ecology, such as the ‘enemy release’ and ‘biotic resistance’ hypotheses, as our approach explicitly considers demographic consequences for impacted resources, such as native and invasive prey species. We also identify potential challenges in the application of comparative functional responses in invasion ecology. These include incorporation of numerical responses, multiple predator effects and trait-mediated indirect interactions, replacement versus non-replacement study designs and the inclusion of functional responses in risk assessment frameworks. In future, the generation of sufficient case studies for a meta-analysis could test the overall hypothesis that comparative functional responses can indeed predict invasive species impacts.