246 resultados para Stone, John Osgood, 1813-1873.
Resumo:
Northern Ireland has been considered a conflict-resolution success story. The 1998 Belfast/Good Friday Agreement provided a framework for managing a long-standing ethnonational conflict, and has ushered in relative political stability. The consociational features of the Northern Ireland Assembly can be seen either as necessary for managing conflict or as institutionalizing sectarianism so that politics along left–right lines cannot emerge. Although there is evidence for the development of a “Northern Irish” identity to counter competing British and Irish identities, Northern Ireland is a long way from transcending the sectarian structures that shape almost all aspects of social and political life. Northern Ireland remains segregated along religious lines and is also prone to tensions around the anniversaries of atrocities and the public use of symbols and rituals. The failure to systematically “deal with the past” through public information recovery and truth-telling mechanisms also seems to have hindered progress toward reconciliation.
Resumo:
Extensive contour scaling of a 200 year old granite church is associated with the breaching of an apparently iron-rich crust and the widespread deposition of atmospheric dust within the canyon-like streetscape of Rio de Janeiro. Contemporary dust, accumulated dust from within the a depression on the building surface, the surface crust and the underlying granite are examined by a combination of total element analysis and sequential extraction, X-ray diffraction and energy dispersive X-ray fluorescence. Results indicate an increase in total organic carbon and a marked decrease in pH within the accumulated dust, and a rapid mobilization of anions and cations from the water-soluble and carbonate phases. It is considered that the latter is linked to salt accumulation within and eventual salt weathering of the granite. Post-depositional alteration of the dust is also linked with the de-silicification of clay minerals (Illite to kaolinite) and the loss of silica from the amorphous Fe/Mn phase of the accumulated dust under the initially saline and progressively more acidic conditions experienced at the stone - atmosphere interface. This mobilization of silica is associated with the formation of what is, in effect, a thin silica-rich surface crust or glaze. Within the glaze, assessory amounts of extractable iron are concentrated within the amorphous and crystalline Fe/Mn phases at levels that are significantly elevated with respect to the underlying granite, but much lower than the equivalent phases of the accumulated dust from which it is principally assumed to derive. The protection afforded to the stone work by the crust is not, however, permanent and within the last 15 years it has been possible to observe a rapid increase in the surface delamination of the church close to street level.
Resumo:
The exposure of historic stone to processes of lichen-induced surface biomodification is determined, first and foremost, by the bioreceptivity of those surfaces to lichen colonization. As an important component of surface bioreceptivity, spatiotemporal variation in stone surface temperature plays a critical role in the spatial distribution of saxicolous lichen on historic stone structures, especially within seasonally hot environments. The ornate limestone and tufa stairwell of the Monastery of Cartuja (1516), Granada, Spain, exhibits significant aspect-related differences in lichen distribution. Lichen coverage and
diurnal fluctuations in stone surface temperature on the stairwell were monitored and mapped, under anticyclonic conditions in summer and winter, using an infrared thermometer and Geographical Information Systems approach. This research suggests that it is not extreme high surface temperatures that
determine the presence or absence of lichen coverage on stonework. Instead, average stone surface temperatures
over the course of the year seem to play a critical role in determining whether or not surfaces are receptive to lichen colonization and subsequent biomodification. It is inferred that lichen, capable of surviving extreme surface temperatures during the Mediterranean summer in an ametabolic state, require a respite period of lower temperatures within which they can metabolize, grow and reproduce.
The higher the average annual temperature a surface experiences, the shorter the respite period for any lichen potentially inhabiting that surface. A critical average temperature threshold of approximately 21 ?C has been identified on the stairwell, with average stone surface temperatures greater than this
generally inhibiting lichen colonization. A brief visual condition assessment between lichen-covered and lichen-free surfaces on the limestone sections of the stairwell suggests relative bioprotection induced by lichen coverage, with stonework quality and sharpness remaining more defined beneath lichen-covered surfaces. The methodology employed in this paper may have further applications in the monitoring and mapping of thermal stress fatigue on historic building materials.
Resumo:
An academic–industrial partnership was formed with the aim of constructing a natural stone database for Northern Ireland that could be used by the public and practitioners to understand both the characteristics of the stone used in construction across Northern Ireland and how it has performed in use, and, through a linked database of historical quarries, explore the potential for obtaining locally sourced replacement stone. The aims were to improve the level of conservation specification by those with a duty of care for historical structures, and to enhance the quality of the conservation work undertaken by archi- tects and contractors through their improved knowledge of stone and stone decay processes.
Resumo:
Rapid in situ diagnosis of damage is a key issue in the preservation of stone-built cultural heritage. This is evident in the increasing number of congresses, workshops and publications dealing with this issue. With this increased activity has come, however, the realisation that for many culturally significant artefacts it is not possible either to remove samples for analysis or to affix surface markers for measurement. It is for this reason that there has been a growth of interest in non-destructive and minimally invasive techniques for characterising internal and external stone condition. With this interest has come the realisation that no single technique can adequately encompass the wide variety of parameters to be assessed or provide the range of information required to identify appropriate conservation. In this paper we describe a strategy to address these problems through the development of an integrated `tool kit' of measurement and analytical techniques aimed specifically at linking object-specific research to appropriate intervention. The strategy is based initially upon the acquisition of accurate three-dimensional models of stone-built heritage at different scales using a combination of millimetre accurate LiDAR and sub-millimetre accurate Object Scanning that can be exported into a GIS or directly into CAD. These are currently used to overlay information on stone characteristics obtained through a combination of Ground Penetrating Radar, Surface Permeametry, Colorimetry and X-ray Fluorescence, but the possibility exists for adding to this array of techniques as appropriate. In addition to the integrated three-dimensional data array provided by superimposition upon Digital Terrain Models, there is the capability of accurate re-measurement to show patterns of surface loss and changes in material condition over time. Thus it is possible to both record and base-line condition and to identify areas that require either preventive maintenance or more significant pre-emptive intervention. In pursuit of these goals the authors are developing, through a UK Government supported collaboration between University Researchers and Conservation Architects, commercially viable protocols for damage diagnosis, condition monitoring and eventually mechanisms for prioritizing repairs to stone-built heritage. The understanding is, however, that such strategies are not age-constrained and can ultimately be applied to structures of any age.
Resumo:
The Copney Stone Circle Complex, Co. Tyrone, N. Ireland, is an important Bronze Age site forming part of the Mid-Ulster Stone Circle Complex. The Environment Service: Historic Monuments and Buildings (ESHMB) initiated a program of bog-clearance in August 1994 to excavate the stone circles. This work was completed by October 1994 and the excavated site was surveyed in August 1995. Almost immediately, the rate at which the stones forming the circles were breaking down was noted and a program of study initiated to make recommendations upon the conservation of this important site. Digital photogrammetric techniques were applied to aerial images of the stone circles and digital terrain models created from the images at a range of scales. These provide base data sets for comparison with identical surveys to be completed in successive years and will allow the rate of deterioration, and the areas most affected, of the circles to be determined. In addition, a 2D analysis of the stones provides an accurate analysis of the absolute 2D dimensions of the stones for rapid desktop computer analysis by researchers remote from the digital photogrammetric workstation used in the survey.
The products of this work are readily incorporated into web sites, educational packages and databases. The technique provides a rapid and user friendly method of presentation of a large body of information and measurements, and a reliable method of storage of the information from Copney should it become necessary to re-cover the site.