13 resultados para Stochastic differential equation with hysteresis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new approach for modeling nonlinear multivariate interest rate processes based on time-varying copulas and reducible stochastic differential equations (SDEs). In the modeling of the marginal processes, we consider a class of nonlinear SDEs that are reducible to Ornstein--Uhlenbeck (OU) process or Cox, Ingersoll, and Ross (1985) (CIR) process. The reducibility is achieved via a nonlinear transformation function. The main advantage of this approach is that these SDEs can account for nonlinear features, observed in short-term interest rate series, while at the same time leading to exact discretization and closed-form likelihood functions. Although a rich set of specifications may be entertained, our exposition focuses on a couple of nonlinear constant elasticity volatility (CEV) processes, denoted as OU-CEV and CIR-CEV, respectively. These two processes encompass a number of existing models that have closed-form likelihood functions. The transition density, the conditional distribution function, and the steady-state density function are derived in closed form as well as the conditional and unconditional moments for both processes. In order to obtain a more flexible functional form over time, we allow the transformation function to be time varying. Results from our study of U.S. and UK short-term interest rates suggest that the new models outperform existing parametric models with closed-form likelihood functions. We also find the time-varying effects in the transformation functions statistically significant. To examine the joint behavior of interest rate series, we propose flexible nonlinear multivariate models by joining univariate nonlinear processes via appropriate copulas. We study the conditional dependence structure of the two rates using Patton (2006a) time-varying symmetrized Joe--Clayton copula. We find evidence of asymmetric dependence between the two rates, and that the level of dependence is positively related to the level of the two rates. (JEL: C13, C32, G12) Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential equations are often directly solvable by analytical means only in their one dimensional version. Partial differential equations are generally not solvable by analytical means in two and three dimensions, with the exception of few special cases. In all other cases, numerical approximation methods need to be utilized. One of the most popular methods is the finite element method. The main areas of focus, here, are the Poisson heat equation and the plate bending equation. The purpose of this paper is to provide a quick walkthrough of the various approaches that the authors followed in pursuit of creating optimal solvers, accelerated with the use of graphical processing units, and comparing them in terms of accuracy and time efficiency with existing or self-made non-accelerated solvers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses compact-stencil finite difference time domain (FDTD) schemes for approximating the 2D wave equation in the context of digital audio. Stability, accuracy, and efficiency are investigated and new ways of viewing and interpreting the results are discussed. It is shown that if a tight accuracy constraint is applied, implicit schemes outperform explicit schemes. The paper also discusses the relevance to digital waveguide mesh modelling, and highlights the optimally efficient explicit scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generalized KP (GKP) equations with an arbitrary nonlinear term model and characterize many nonlinear physical phenomena. The symmetries of GKP equation with an arbitrary nonlinear term are obtained. The condition that must satisfy for existence the symmetries group of GKP is derived and also the obtained symmetries are classified according to different forms of the nonlinear term. The resulting similarity reductions are studied by performing the bifurcation and the phase portrait of GKP and also the corresponding solitary wave solutions of GKP
equation are constructed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonperturbative nonlinear statistical approach is presented to describe turbulent magnetic systems embedded in a uniform mean magnetic field. A general formula in the form of an ordinary differential equation for magnetic field-line wandering (random walk) is derived. By considering the solution of this equation for different limits several new results are obtained. As an example, it is demonstrated that the stochastic wandering of magnetic field-lines in a two-component turbulence model leads to superdiffusive transport, contrary to an existing diffusive picture. The validity of quasilinear theory for field-line wandering is discussed, with respect to different turbulence geometry models, and previous diffusive results are shown to be deduced in appropriate limits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chaotic profile of dust grain dynamics associated with dust-acoustic oscillations in a dusty plasma is considered. The collective behaviour of the dust plasma component is described via a multi-fluid model, comprising Boltzmann distributed electrons and ions, as well as an equation of continuity possessing a source term for the dust grains, the dust momentum and Poisson's equations. A Van der Pol–Mathieu-type nonlinear ordinary differential equation for the dust grain density dynamics is derived. The dynamical system is cast into an autonomous form by employing an averaging method. Critical stability boundaries for a particular trivial solution of the governing equation with varying parameters are specified. The equation is analysed to determine the resonance region, and finally numerically solved by using a fourth-order Runge–Kutta method. The presence of chaotic limit cycles is pointed out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies a problem of dynamic pricing faced by a retailer with limited inventory, uncertain about the demand rate model, aiming to maximize expected discounted revenue over an infinite time horizon. The retailer doubts his demand model which is generated by historical data and views it as an approximation. Uncertainty in the demand rate model is represented by a notion of generalized relative entropy process, and the robust pricing problem is formulated as a two-player zero-sum stochastic differential game. The pricing policy is obtained through the Hamilton-Jacobi-Isaacs (HJI) equation. The existence and uniqueness of the solution of the HJI equation is shown and a verification theorem is proved to show that the solution of the HJI equation is indeed the value function of the pricing problem. The results are illustrated by an example with exponential nominal demand rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducible diffusions (RDs) are nonlinear transformations of analytically solvable Basic Diffusions (BDs). Hence, by construction RDs are analytically tractable and flexible diffusion processes. Existing literature on RDs has mostly focused on time-homogeneous transformations, which to a significant extent fail to explore the full potential of RDs from both theoretical and practical points of view. In this paper, we propose flexible and economically justifiable time variations to the transformations of RDs. Concentrating on the Constant Elasticity Variance (CEV) RDs, we consider nonlinear dynamics for our time-varying transformations with both deterministic and stochastic designs. Such time variations can greatly enhance the flexibility of RDs while maintaining sufficient tractability of the resulting models. In the meantime, our modeling approach enjoys the benefits of classical inferential techniques such as the Maximum Likelihood (ML). Our application to the UK and the US short-term interest rates suggests that from an empirical point of view time-varying transformations are highly relevant and statistically significant. We expect that the proposed models can describe more truthfully the dynamic time-varying behavior of economic and financial variables and potentially improve out-of-sample forecasts significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axisymmetric consolidation is a classical boundary value problem for geotechnical engineers. Under some circumstances an analysis in which the changes in pore pressure, effective stress and displacement can be uncoupled from each other is sufficient, leading to a Terzaghi formulation of the axisymmetric consolidation equation in terms of the pore pressure. However, representation of the Mandel-Cryer effect usually requires more complex, coupled, Biot formulations. A new coupled formulation for the plane strain, axisymmetric consolidation problem is presented for small, linear elastic deformations. A single, easily evaluated parameter couples changes in pore pressure to changes in effective stress, and the resulting differential equation for pore pressure dissipation is very similar to Terzaghi’s classic formulation. The governing equations are then solved using finite differences and the consolidation of a solid infinite cylinder analysed, calculating the variation with time and with radius of the excess pore pressure and the radial displacement. Comparison with a previously published semi-analytical solution indicates that the formulation successfully embodies the Mandel-Cryer effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motion of a clarinet reed that is clamped to a mouthpiece and supported by a lip is simulated in the time-domain using finite difference methods. The reed is modelled as a bar with non-uniform cross section, and is described using a one-dimensional, fourth-order partial differential equation. The interactions with the mouthpiece Jay and the player's lip are taken into account by incorporating conditional contact forces in the bar equation. The model is completed by clamped-free boundary conditions for the reed. An implicit finite difference method is used for discretising the system, and values for the physical parameters are chosen both from laboratory measurements and by accurate tuning of the numerical simulations. The accuracy of the numerical system is assessed through analysis of frequency warping effects and of resonance estimation. Finally, the mechanical properties of the system are studied by analysing its response to external driving forces. In particular, the effects of reed curling are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to increase the performance of hysteresis compensation for Shape Memory Alloy (SMA) actuators by using inverse Preisach model in closed — loop control system. This is used to reduce hysteresis effects and improve accuracy for the displacement of SMA actuators. Firstly, hysteresis is identified by numerical Preisach model implementation. The geometrical interpretation from first order transition curves is used for hysteresis modeling. Secondly, the inverse Preisach model is formulated and incorporated in closed-loop PID control system in order to obtain desired current-to-displacement relationship with hysteresis reducing. The experimental results for hysteresis compensation by using this method are also shown in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrodinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrodinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude