59 resultados para Static Nonlinearity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first paper that introduces a nonlinearity test for principal component models. The methodology involves the division of the data space into disjunct regions that are analysed using principal component analysis using the cross-validation principle. Several toy examples have been successfully analysed and the nonlinearity test has subsequently been applied to data from an internal combustion engine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution UCLES/AAT spectra are presented for nine B-type supergiants in the SMC, chosen on the basis that they may show varying amounts of nuclear-synthetically processed material mixed to their surface. These spectra have been analysed using a new grid of approximately 12 000 non-LTE line blanketed tlusty model atmospheres to estimate atmospheric parameters and chemical composition. The abundance estimates for O, Mg and Si are in excellent agreement with those deduced from other studies, whilst the low estimate for C may reflect the use of the C II doublet at 4267 Å. The N estimates are approximately an order of magnitude greater than those found in unevolved B-type stars or H II regions but are consistent with the other estimates in AB-type supergiants. These results have been combined with results from a unified model atmosphere analysis of UVES/VLT spectra of B-type supergiants (Trundle et al. 2004, A&A, 417, 217) to discuss the evolutionary status of these objects. For two stars that are in common with those discussed by Trundle et al., we have undertaken a careful comparison in order to try to understand the relative importance of the different uncertainties present in such analyses, including observational errors and the use of static or unified models. We find that even for these relatively luminous supergiants, tlusty models yield atmospheric parameters and chemical compositions similar to those deduced from the unified code fastwind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We suggest a scheme to generate a macroscopic superposition state ("Schrodinger cat state") of a free-propagating optical field using a beam splitter, homodyne measurement, and a very small Kerr nonlinear effect. Our scheme makes it possible to reduce considerably the required nonlinear effect to generate an optical cat state using simple and efficient optical elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the possibilities for quantum state engineering offered by a model for Kerr-type nonlinearity enhanced by electromagnetically induced transparency (EIT), which was recently proposed by Petrosyan and Kurizki [2002, Phys. Rev. A, 65, 33833]. We go beyond the semiclassical treatment and derive a quantum version of the model with both a full Hamiltonian approach and an analysis in terms of dressed states. The preparation of an entangled coherent state via a cross-phase modulation effect is demonstrated. We briefly show that the violation of locality for such an entangled coherent state is robust against low detection efficiency. Finally, we investigate the possibility of a bi-chromatic photon blockade realized via the interaction of a low density beam of atoms with a bi-modal electromagnetic cavity which is externally driven. We show the effectiveness of the blockade effect even when more than a single atom is inside the cavity. The possibility to control two different cavity modes allows some insights into the generation of an entangled state of cavity modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrocarbon nanoparticles with diameters between 10 and 30 nanometres are created in a low pressure plasma combining capacitive and inductive power coupling. The particles are generated in the capacitive phase of the experiment and stay confined in the plasma in the inductive phase. The presence of these embedded particles induces a rotation of a particle-free region (void) around the symmetry axis of the reactor. The phenomenon is analysed using optical emission spectroscopy both line integrated and spatially resolved via an intensified charge coupled device camera. From these data, electron temperatures and densities are deduced. We find that the rotation of the void is driven by a tangential component of the ion drag force induced by an external static magnetic field. Two modes are observed: a fast rotation of the void in the direction opposite to that of the tangential component and a slow rotation in the same direction. The rotation speed decreases linearly with the size of the particles. In the fast mode the dependence on the applied magnetic field is weak and consequently the rotation speed can serve as a monitor to detect particle sizes in low temperature plasmas.