35 resultados para Stable Isotope Analysis
Resumo:
A pre-concentration system has been validated for use with a gas chromatography/mass spectrometry/isotope ratio mass spectrometer (GC/MS/IRMS) to determine ambient air 13C/12C ratios for methyl halides (MeCl and MeBr) and chlorofluorocarbons (CFCs). The isotopic composition of specific compounds can provide useful information on their atmospheric budgets and biogeochemistry that cannot be ascertained from abundance measurements alone. Although pre-concentration systems have been previously used with a GC/MS/IRMS for atmospheric trace gas analysis, this is the first study also to report system validation tests. Validation results indicate that the pre-concentration system and subsequent separation technologies do not significantly alter the stable isotopic ratios of the target methyl halides, CFC-12 (CCl2F2) and CFC-113 (C2Cl3F3). Significant, but consistent, isotopic shifts of -27.5 to -25.6 do occur within the system for CFC-11 (CCl3F), although the shift is correctible. The method presented has the capacity to separate these target halocarbons from more than 50 other compounds in ambient air samples. Separation allows for the determination of stable carbon isotope ratios of five of these six target trace atmospheric constituents within ambient air for large volume samples (10 L). Representative urban air analyses from Belfast City are also presented which give carbon isotope results similar to published values for 13C/12C analysis of MeCl (-39.1) and CFC-113 (-28.1). However, this is the first paper reporting stable carbon isotope signatures for CFC-11 (-29.4) and CFC-12 (-37.0).
Resumo:
1. There is increasing interest in the use of stable isotope analysis of archived materials to study the long-term impacts of lake perturbations, including nutrient manipulation or species invasion. We tested the utility of this approach in a shallow productive lake using the zooplanktivorous early life stages of roach ( Rutilus rutilus), a fish species that is widespread throughout Eurasian lakes.
Resumo:
Taphonomic research of bones can provide additional insight into a site's formation and development, the burial environment and ongoing post-mortem processes. A total of 30 tortoise (Cylindraspis) femur bone samples from the Mare aux Songes site (Mauritius)were studied histologically, assessing parameters such as presence and type of microbial alteration, inclusions, staining/infiltrations, the degree of microcracking and birefringence. The absence of microbial attack in the 4200 year old Mare aux Songes bones suggests the animals rapidly entered the soil whole-bodied and were sealed anoxically, although they suffered frombiological and chemical degradation (i.e. pyrite formation/oxidation, mineral dissolution and staining) related to changes in the site's hydrology. Additionally, carbon and nitrogen stable isotopeswere analysed to obtain information on the animals' feeding behaviour. The results show narrowly distributed δ13C ratios, indicating a terrestrial C3 plant-based diet, combined with a wide range in δ15N ratios. This is most likely related to the tortoises' drought-adaptive ability to change their metabolic processes, which can affect the δ15N ratios. Furthermore, ZooMS collagen fingerprinting analysis successfully identified two tortoise species (C. triserrata and C. inepta) in the bone assemblage,which,when combined with stable isotope data, revealed significantly different δ15N ratios between the two tortoise species. As climatic changes around this period resulted in increased aridity in the Mascarene Islands, this could explain the extremely elevated δ15N ratio in our dataset. The endemic fauna was able to endure the climatic changes 4200 years ago, although human arrival in the 17th century changed the original habitat to such an extent that it resulted in the extinction of several species. Fortunately we are still able to study these extinct tortoises due to the beneficial conditions of their burial environment, resulting in excellent bone preservation.
Palaeobiology of an extinct Ice Age mammal: Stable isotope and cementum analysis of giant deer teeth
Resumo:
The extinct giant deer, Megaloceros giganteus, is among the largest and most famous of the cervids. Megaloceros remains have been uncovered across Europe and western Asia. but the highest concentrations come from Irish bogs and caves Although Megaloceros has enjoyed a great deal of attention over the centuries, paleobiological study has focused oil morphometric and distributional work until now. This paper presents quantitative data that have implications for understanding its sudden extirpation in western Europe during a period of global climate change approximately 10.600 C-14 years ago (ca 12,500 calendar years BP). We report here the first stable isotope analysis of giant deer teeth. which we combine with dental cementum accretion in order to document age, diet and life-history seasonality from birth until death Enamel delta C-13 and delta O-18 measured in the second and third molars from seven individual giant deer Suggest a grass and forbbased diet supplemented with browse in a deteriorating. possibly water-stressed, environment, and a season of birth around spring/early summer Cementurm data indicate that the ages of the specimens ranged from 6.5 to 14 years and that they possessed mature antlers by autumn, similar to extant cervids. In addition. the possibility for combining these two techniques in future mammalian paleoccological studies is considered. The data presented in this study imply that Megoloceros would have indeed been vulnerable to extirpation during the terminal Pleistocene in Ireland. and this information is relevant to understanding the broader pattern of its extinction.
Resumo:
Accurate field data on trophic interactions for suspension feeders are lacking, and new approaches to dietary analysis are necessary. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was integrated with stable isotope analysis to examine dietary patterns in suspension-feeding Mytilus spp. from seven spatially discrete locations within a semi-enclosed marine bay (Strangford Lough, Northern Ireland) during June 2009. Results of the two methods were highly correlated, reflecting dietary variation in a similar manner. Variation in PCR-DGGE data was more strongly correlated with the principal environmental gradient (distance from the opening to the Irish Sea), while values of dC and dN became progressively enriched, suggesting a greater dependence on animal tissue and benthic microalgae. Diatoms and crustaceans were the most frequently observed phylotypes identified by sequencing, but specific DNA results provided little support for the trophic trends observed in the stable isotope data. This combined approach offers an increased level of trophic insight for suspension feeders and could be applied to other organisms. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Jellyfish are increasingly topical within studies of marine food webs. Stable isotope analysis represents a valuable technique to unravel the complex trophic role of these long-overlooked species. In other taxa, sample preservation has been shown to alter the isotopic values of species under consideration, potentially leading to misinterpretation of trophic ecology. To identify potential preservation effects in jellyfish, we collected Aurelia aurita from Strangford Lough (54(o)22'44.73aEuro(3)N, 5(o)32'53.44aEuro(3)W) during May 2009 and processed them using three different methods prior to isotopic analysis (unpreserved, frozen and preserved in ethanol). A distinct preservation effect was found on delta N-15 values: furthermore, preservation also influenced the positive allometric relationship between individual size and delta N-15 values. Conversely, delta C-13 values remained consistent between the three preservation methods, conflicting with previous findings for other invertebrate, fish and mammalian species. These findings have implications for incorporation of jellyfish into marine food webs and remote sampling regimes where preservation of samples is unavoidable.
Resumo:
Rhizosphere microorganisms play an important role in soil carbon flow, through turnover of root exudates, but there is little information on which organisms are actively involved or on the influence of environmental conditions on active communities. In this study, a (CO2)-C-13 pulse labelling field experiment was performed in an upland grassland soil, followed by RNA-stable isotope probing (SIP) analysis, to determine the effect of liming on the structure of the rhizosphere microbial community metabolizing root exudates. The lower limit of detection for SIP was determined in soil samples inoculated with a range of concentrations of C-13-labelled Pseudomonas fluorescens and was found to lie between 10(5) and 10(6) cells per gram of soil. The technique was capable of detecting microbial communities actively assimilating root exudates derived from recent photo-assimilate in the field. Denaturing gradient gel electrophoresis (DGGE) profiles of bacteria, archaea and fungi derived from fractions obtained from caesium trifluoroacetate (CsTFA) density gradient ultracentrifugation indicated that active communities in limed soils were more complex than those in unlimed soils and were more active in utilization of recently exuded C-13 compounds. In limed soils, the majority of the community detected by standard RNA-DGGE analysis appeared to be utilizing root exudates. In unlimed soils, DGGE profiles from C-12 and C-13 RNA fractions differed, suggesting that a proportion of the active community was utilizing other sources of organic carbon. These differences may reflect differences in the amount of root exudation under the different conditions.
Resumo:
RATIONALE Stable isotope values (d13C and d15N) of darted skin and blubber biopsies can shed light on habitat use and diet of cetaceans, which are otherwise difficult to study. Non-dietary factors affect isotopic variability, chiefly the depletion of C due to the presence of C-rich lipids. The efficacy of post hoc lipid-correction models (normalization) must be tested. METHODS For tissues with high natural lipid content (e.g., whale skin and blubber), chemical lipid extraction or normalization is necessary. C:N ratios, d13C values and d15N values were determined for duplicate control and lipid-extracted skin and blubber of fin (Balaenoptera physalus), humpback (Megaptera novaeangliae) and minke whales (B. acutorostrata) by continuous-flow elemental analysis isotope ratio mass spectrometry (CF-EA-IRMS). Six different normalization models were tested to correct d13C values for the presence of lipids. RESULTS Following lipid extraction, significant increases in d13C values were observed for both tissues in the three species. Significant increases were also found for d15N values in minke whale skin and fin whale blubber. In fin whale skin, the d15N values decreased, with no change observed in humpback whale skin. Non-linear models generally out-performed linear models and the suitability of models varied by species and tissue, indicating the need for high model specificity, even among these closely related taxa. CONCLUSIONS Given the poor predictive power of the models to estimate lipid-free d13C values, and the unpredictable changes in d N values due to lipid-extraction, we recommend against arithmetical normalization in accounting for lipid effects on d13C values for balaenopterid skin or blubber samples. Rather, we recommend that duplicate analysis of lipid-extracted (d13C values) and non-treated tissues (d15N values) be used. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
We report the results of stable carbon and nitrogen isotope analysis of 354 human and faunal samples from five archaeological cultures of the Minusinsk Basin, Southern Siberia – Afanasyevo, Okunevo, Andronovo, Karasuk and Tagar (ca. 2700–1 BC) – a key location in Eurasia due to its position on a northern corridor linking China and central Eurasia. The results indicate that the diet of Eneolithic to Middle Bronze Age (Afanasyevo to Andronovo) populations was primarily C3-based, with C4 plants only becoming an important component of the diet in the Late Bronze Age Karasuk and Early Iron Age Tagar cultures. Freshwater fish seems to have been an important constituent of the diets in all groups. The findings constitute the earliest concrete evidence for the substantial use of millet in the eastern Eurasian steppe. We propose that it was probably introduced from Northwestern China during the Karasuk culture at the start of the Late Bronze Age, ca. 1500 BC. We conclude with a discussion of the implications for the nature of pastoralist economies on the steppes.
Resumo:
Stable isotopes (delta O-18 and delta C-13) of lacustrine carbonates (Chara spp. algae and Pisidium spp. molluscs) from a lake sedimentary sequence in central Sweden were analysed to infer changes in lake hydrology and climate during the late Holocene. Results from analysis of lake water isotopes (delta O-18 and delta H-2) show that Lake Blektjarnen water isotope composition is responsive to the balance between evaporation and input water (E/l ratio). A high E/l ratio results from a dry and probably warmer climate, decreasing the relative importance of precipitation input. Under such conditions evaporation and atmospheric equilibration probably enrich lake water in O-18 and C-13, respectively, which is reflected in the isotopic composition of the carbonates in the lake. From the relatively positive Chara delta O-18 values we infer that conditions were dry and warm between 4400 and 4000 cal. a BP, whereas more negative values indicate that conditions were wetter and probably cooler between 4000 and 3000 cal. a BP. A drier climate is inferred from more positive values between 2500 and 1000 cal. a BP. However, a successive depletion after ca. 1750 cal. a BP, also detected in several other delta O-18 records (carbonate and diatom), suggest increasingly wetter conditions in Scandinavia after that time, which is probably related to increased strength of the zonal flow.