3 resultados para Spectrophotometric analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on another alternative sensing platform for the detection of protein biomarker (PSA–ACT complex) based on homogenous growth of Au nanocrystals in solution phase. The immuno-recognition event is translated into the gold nanoparticle growth signal which can be intuitively recognized by an unaided eye, or quantitatively measured by an UV–vis spectrophotometric analysis. Surface plasmonic signature and kinetics of the Au nanogrowth in the homogenous phase containing of HAuCl4, AA, and CTAB have also been studied to provide suitable parameters for the immunoassay. As a result, detection limit of PSA–ACT complex was determined to be 10 fM. The result indicated that this is a very sensitive, robust, simple, and economic strategy to detect protein biomarkers, and it has great potential to detect other biological interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, a gold nanoparticle (Au-NP)-based detection method for sensitive and specific DNA-based diagnostic applications is described. A sandwich format consisting of Au-NPs/DNA/PMP (Streptavidin-coated MagnetSphere Para-Magnetic Particles) was fabricated. PMPs captured and separated target DNA while Au-NPs modified with oligonucleotide detection sequences played a role in recognition and signal production. Due to the much lower stability of mismatched DNA strands caused by unstable duplex structures in solutions of relatively low salt concentration, hybridization efficiency in the presence of different buffers was well investigated, and thus, the optimized salt concentration allowed for discrimination of single-mismatched DNA (MMT) from perfectly matched DNA (PMT). Therefore, quantitative information concerning the target analyte was translated into a colorimetric signal, which could easily and quantitatively measured by low-cost UV–vis spectrophotometric analysis. The results indicated this to be a very simple and economic strategy for detection of single-mismatched DNA strands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the 56Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical- infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M env ∼ 20 M , progenitor radius R ∼ 3 × 1013 cm (∼430 R), explosion energy E ∼ 1.5 foe, and initial 56Ni mass ∼0.06 M. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M of the Type IIP events.