67 resultados para Spatial data
Resumo:
In this letter, we show how a 2.4-GHz retrodirective array operating in a multipath rich environment can be utilized in order to spatially encrypt digital data. For the first time, we give experimental evidence that digital data that has no mathematical encryption applied to it can be successfully recovered only when it is detected with a receiver that is polarization-matched to that of a reference continuous-wave (CW) pilot tone signal. In addition, we show that successful detection with low bit error rate (BER) will only occur within a highly constrained spatial region colocated close to the position of the CW reference signal. These effects mean that the signal cannot be intercepted and its modulated data recovered at locations other than the constrained spatial region around the position from which the retrodirective communication was initiated.
Resumo:
Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.
Resumo:
Perfect information is seldom available to man or machines due to uncertainties inherent in real world problems. Uncertainties in geographic information systems (GIS) stem from either vague/ambiguous or imprecise/inaccurate/incomplete information and it is necessary for GIS to develop tools and techniques to manage these uncertainties. There is a widespread agreement in the GIS community that although GIS has the potential to support a wide range of spatial data analysis problems, this potential is often hindered by the lack of consistency and uniformity. Uncertainties come in many shapes and forms, and processing uncertain spatial data requires a practical taxonomy to aid decision makers in choosing the most suitable data modeling and analysis method. In this paper, we: (1) review important developments in handling uncertainties when working with spatial data and GIS applications; (2) propose a taxonomy of models for dealing with uncertainties in GIS; and (3) identify current challenges and future research directions in spatial data analysis and GIS for managing uncertainties.
Resumo:
The problem of detecting spatially-coherent groups of data that exhibit anomalous behavior has started to attract attention due to applications across areas such as epidemic analysis and weather forecasting. Earlier efforts from the data mining community have largely focused on finding outliers, individual data objects that display deviant behavior. Such point-based methods are not easy to extend to find groups of data that exhibit anomalous behavior. Scan Statistics are methods from the statistics community that have considered the problem of identifying regions where data objects exhibit a behavior that is atypical of the general dataset. The spatial scan statistic and methods that build upon it mostly adopt the framework of defining a character for regions (e.g., circular or elliptical) of objects and repeatedly sampling regions of such character followed by applying a statistical test for anomaly detection. In the past decade, there have been efforts from the statistics community to enhance efficiency of scan statstics as well as to enable discovery of arbitrarily shaped anomalous regions. On the other hand, the data mining community has started to look at determining anomalous regions that have behavior divergent from their neighborhood.In this chapter,we survey the space of techniques for detecting anomalous regions on spatial data from across the data mining and statistics communities while outlining connections to well-studied problems in clustering and image segmentation. We analyze the techniques systematically by categorizing them appropriately to provide a structured birds eye view of the work on anomalous region detection;we hope that this would encourage better cross-pollination of ideas across communities to help advance the frontier in anomaly detection.
Resumo:
Segregation measures have been applied in the study of many societies, and traditionally such measures have been used to assess the degree of division between social and cultural groups across urban areas, wider regions, or perhaps national areas. The degree of segregation can vary substantially from place to place even within very small areas. In this paper the substantive concern is with religious/political segregation in Northern Ireland—particularly the proportion of Protestants (often taken as an indicator of those who wish to retain the union with Britain) to Catholics (often taken as an indicator of those who favour union with the Republic of Ireland). Traditionally, segregation is measured globally—that is, across all units in a given area. A recent trend in spatial data analysis generally, and in segregation analysis specifically, is to assess local features of spatial datasets. The rationale behind such approaches is that global methods may obscure important spatial variations in the property of interest, and thus prevent full use of the data. In this paper the utility of local measures of residential segregation is assessed with reference to the religious/political composition of Northern Ireland. The paper demonstrates marked spatial variations in the degree and nature of residential segregation across Northern Ireland. It is argued that local measures provide highly useful information in addition to that provided in maps of the raw variables and in standard global segregation measures.
Resumo:
The Antrim Coast Road stretching from the seaport of Larne in the East of Northern Ireland to the famous Giant’s Causeway in the North has a well-deserved reputation for being one of the most spectacular roads in Europe (Day, 2006). At various locations along the route, fluid interactions between the problematic geology, Jurassic Lias Clay and Triassic Mudstone overlain by Cretaceous Limestone and Tertiary Basalt, and environmental variables result in frequent instances of slope instability within the vadose zone. During such instances of instability, debris flows and composite mudflows encroach on the carriageway posing a hazard to road users. This paper examines the site investigative, geotechnical and spatial analysis techniques currently being implemented to monitor slope stability for one site at Straidkilly Point, Glenarm, Northern Ireland. An in-depth understanding of the geology was obtained via boreholes, resistivity surveys and laboratory testing. Environmental variables recorded by an on-site weather station were correlated with measured pore water pressure and soil moisture infiltration dynamic data.
Terrestrial LiDAR (TLS) was applied to the slope for the monitoring of failures, with surveys carried out on a bi-monthly basis. TLS monitoring allowed for the generation of Digital Elevation Models (DEMs) of difference, highlighting areas of recent movement, erosion and deposition. Morphology parameters were generated from the DEMs and include slope, curvature and multiple measures of roughness. Changes in the structure of the slope coupled with morphological parameters are characterised and linked to progressive failures from the temporal monitoring. In addition to TLS monitoring, Aerial LiDARi datasets were used for the spatio-morphological characterisation of the slope on a macro scale. Results from the geotechnical and environmental monitoring were compared with spatial data obtained through Terrestrial and Airborne LiDAR, providing a multi-faceted approach to slope stability characterization, which facilitates more informed management of geotechnical risk by the Northern Ireland Roads Service.
Resumo:
This paper uses the analytical potential of Geographical Information Systems (GIS) to explore processes of map production and circulation in early-seventeenth century Ireland. The paper focuses on a group of historic maps, attributed to Josias Bodley, which were commissioned in 1609 by the English Crown to assist in the Plantation of Ulster. Through GIS and digitizing map-features, and in particular by quantifying map-distortion, it is possible to examine how these maps were made, and by whom. Statistical analyses of spatial data derived from the GIS are shown to provide a methodological basis for ‘excavating’ historical geographies of Plantation map-making. These techniques, when combined with contemporary written sources, reveal further insight on the ‘cartographic encounters’ taking place between surveyors and map-makers working in Ireland in the early 1600s, opening up the ‘mapping worlds’ which linked Ireland and Britain through the networks and embodied practices of Bodley and his map-makers.
Resumo:
The quantity and quality of spatial data are increasing rapidly. This is particularly evident in the case of movement data. Devices capable of accurately recording the position of moving entities have become ubiquitous and created an abundance of movement data. Valuable knowledge concerning processes occurring in the physical world can be extracted from these large movement data sets. Geovisual analytics offers powerful techniques to achieve this. This article describes a new geovisual analytics tool specifically designed for movement data. The tool features the classic space-time cube augmented with a novel clustering approach to identify common behaviour. These techniques were used to analyse pedestrian movement in a city environment which revealed the effectiveness of the tool for identifying spatiotemporal patterns. © 2014 Taylor & Francis.
Resumo:
There is now a strong body of research that suggests that the form of the built environment can influence levels of physical activity, leading to an increasing interest in incorporating health objectives into spatial planning and regeneration policies and projects. There have been a number of strands to this research, one of which has sought to develop “objective” measurements of the built environment using Geographic Information Science (GIS) involving measures of connectivity and proximity to compare the relative “walkability” of different neighbourhoods. The development of the “walkability index” (e.g. Leslie et al 2007, Frank et al 2010) has become a popular indicator of spatial distribution of those features of the built environment that are considered to have the greatest positive influence on levels of physical activity. The success of this measure is built on its ability to succinctly capture built environment correlates of physical activity using routinely available spatial data, which includes using road centre lines as a basis of a proxy for connectivity.
This paper discusses two key aspects of the walkability index. First, it follows the suggestion of Chin et al (2008) that the use of a footpath network (where available), rather than road centre lines, may be far more effective in evaluating walkability. This may be particularly important for assessing changes in walkability arising from pedestrian-focused infrastructure projects, such as greenways. Second, the paper explores the implication of this for how connectivity can be measured. The paper takes six different measures of connectivity and first analyses the relationships between them and then tests their correlation with actual levels of physical activity of local residents in Belfast, Northern Ireland. The analysis finds that the best measurements appear to be intersection density and metric reach and uses this finding to discuss the implications of this for developing tools that may better support decision-making in spatial planning.
Resumo:
Mining seafloor massive sulfides for metals is an emergent industry faced with environmental management challenges. These revolve largely around limits to our current understanding of biological variability in marine systems, a challenge common to all marine environmental management. VentBase was established as a forum where academic, commercial, governmental, and non-governmental stakeholders can develop a consensus regarding the management of exploitative activities in the deep-sea. Participants advocate a precautionary approach with the incorporation of lessons learned from coastal studies. This workshop report from VentBase encourages the standardization of sampling methodologies for deep-sea environmental impact assessment. VentBase stresses the need for the collation of spatial data and importance of datasets amenable to robust statistical analyses. VentBase supports the identification of set-asides to prevent the local extirpation of vent-endemic communities and for the post-extraction recolonization of mine sites. © 2013.
Resumo:
Soil carbon stores are a major component of the annual returns required by EU governments to the Intergovernmental Panel on Climate Change. Peat has a high proportion of soil carbon due to the relatively high carbon density of peat and organic-rich soils. For this reason it has become increasingly important to measure and model soil carbon stores and changes in peat stocks to facilitate the management of carbon changes over time. The approach investigated in this research evaluates the use of airborne geophysical (radiometric) data to estimate peat thickness using the attenuation of bedrock geology radioactivity by superficial peat cover. Remotely sensed radiometric data are validated with ground peat depth measurements combined with non-invasive geophysical surveys. Two field-based case studies exemplify and validate the results. Variography and kriging are used to predict peat thickness from point measurements of peat depth and airborne radiometric data and provide an estimate of uncertainty in the predictions. Cokriging, by assessing the degree of spatial correlation between recent remote sensed geophysical monitoring and previous peat depth models, is used to examine changes in peat stocks over time. The significance of the coregionalisation is that the spatial cross correlation between the remote and ground based data can be used to update the model of peat depth. The result is that by integrating remotely sensed data with ground geophysics, the need is reduced for extensive ground-based monitoring and invasive peat depth measurements. The overall goal is to provide robust estimates of peat thickness to improve estimates of carbon stocks. The implications from the research have a broader significance that promotes a reduction in the need for damaging onsite peat thickness measurement and an increase in the use of remote sensed data for carbon stock estimations.