4 resultados para South Pacific Commission.
Resumo:
The spread of nonindigenous species into new habitats is having a drastic effect on natural ecosystems and represents an increasing threat to global biodiversity. In the marine environment, where data on the movement of invasive species is scarce, the spread of alien seaweeds represents a particular problem. We have employed a combination of plastid microsatellite markers and DNA sequence data from three regions of the plastid genome to trace the invasive history of the green alga Codium fragile ssp. tomentosoides. Extremely low levels of genetic variation were detected, with only four haplotypes present in the species’ native range in Japan and only two of these found in introduced populations. These invasive populations displayed a high level of geographical structuring of haplotypes, with one haplotype localized in the Mediterranean and the other found in Northwest Atlantic, northern European and South Pacific populations. Consequently, we postulate that there have been at least two separate introductions of C. fragile ssp. tomentosoides from its native range in the North Pacific.
Resumo:
The influence of bottom topography on the distribution of temperature and salinity in the Indonesian seas region has been studied with a high-resolution model based on the Princeton Ocean Model. One of the distinctive properties of the model is an adequate reproduction of all major topographic features in the region by the model bottom relief. The three major routes of flow of Pacific water through the region have been identified. The western route follows the flow of North Pacific Water through the Sulawesi Sea, Makassar Strait, Flores Sea, and Banda Sea. This is the main branch of the Indonesian Throughflow. The eastern routes follow the flow of South Pacific water through the eastern Indonesian seas. This water enters the region either through the Halmahera Sea or by flowing to the north around Halmahera Island into the Morotai Basin and then into the Maluku Sea. A deep southward flow of South Pacific Water fills the Seram Sea below 1200 m through the Lifamatola Passage. As it enters the Seram Sea, this overflow turns eastward at depths greater than 2000 m, then upwells in the eastern part of the Seram Sea before returning westward at ~1500-2000 m. The flow continues westward across the Seram Sea, spreading to greater depths before entering the Banda Sea at the Buru-Mangole passage. It is this water that shapes the temperature and salinity of the deep Banda Sea. Topographic elevations break the Indonesian seas region down into separate basins. The difference in the distributions of potential temperature, ?, and salinity, S, in adjacent basins is primarily due to specific properties of advection of ? and S across a topographic rise. By and large, the topographic rise blocks deep flow between basins whereas water shallower than the depth of the rise is free to flow between basins. To understand this process, the structure of simulated fields of temperature and salinity has been analyzed. To identify a range of advected ? or S, special sections over the sills with isotherms or isohalines and isotachs of normal velocity have been considered. Following this approach the impact of various topographic rises on the distribution of ? and S has been identified. There are no substantial structural changes of potential temperature and salinity distributions between seasons, though values of some parameters of temperature and salinity distributions, e.g., magnitudes of maxima and minima, can change. It is shown that the main structure of the observed distributions of temperature and salinity is satisfactorily reproduced by the model throughout the entire domain.
Resumo:
The International Nusantara Stratification and Transport (INSTANT) program measured currents through multiple Indonesian Seas passages simultaneously over a three-year period (from January 2004 to December 2006). The Indonesian Seas region has presented numerous challenges for numerical modelers - the Indonesian Throughflow (ITF) must pass over shallow sills, into deep basins, and through narrow constrictions on its way from the Pacific to the Indian Ocean. As an important region in the global climate puzzle, a number of models have been used to try and best simulate this throughflow. In an attempt to validate our model, we present a comparison between the transports calculated from our model and those calculated from the INSTANT in situ measurements at five passages within the Indonesian Seas (Labani Channel, Lifamatola Passage, Lombok Strait, Ornbai Strait, and Timor Passage). Our Princeton Ocean Model (POM) based regional Indonesian Seas model was originally developed to analyze the influence of bottom topography on the temperature and salinity distributions in the Indonesian seas region, to disclose the path of the South Pacific Water from the continuation of the New Guinea Coastal Current entering the region of interest up to the Lifamatola Passage, and to assess the role of the pressure head in driving the ITF and in determining its total transport. Previous studies found that this model reasonably represents the general long-term flow (seasons) through this region. The INSTANT transports were compared to the results of this regional model over multiple timescales. Overall trends are somewhat represented but changes on timescales shorter than seasonal (three months) and longer than annual were not considered in our model. Normal velocities through each passage during every season are plotted. Daily volume transports and transport-weighted temperature and salinity are plotted and seasonal averages are tabulated.