4 resultados para Somatic Excision
Resumo:
PURPOSE: To evaluate the addition of cetuximab to neoadjuvant chemotherapy before chemoradiotherapy in high-risk rectal cancer. PATIENTS AND METHODS: Patients with operable magnetic resonance imaging-defined high-risk rectal cancer received four cycles of capecitabine/oxaliplatin (CAPOX) followed by capecitabine chemoradiotherapy, surgery, and adjuvant CAPOX (four cycles) or the same regimen plus weekly cetuximab (CAPOX+C). The primary end point was complete response (CR; pathologic CR or, in patients not undergoing surgery, radiologic CR) in patients with KRAS/BRAF wild-type tumors. Secondary end points were radiologic response (RR), progression-free survival (PFS), overall survival (OS), and safety in the wild-type and overall populations and a molecular biomarker analysis. RESULTS: One hundred sixty-five eligible patients were randomly assigned. Ninety (60%) of 149 assessable tumors were KRAS or BRAF wild type (CAPOX, n = 44; CAPOX+C, n = 46), and in these patients, the addition of cetuximab did not improve the primary end point of CR (9% v 11%, respectively; P = 1.0; odds ratio, 1.22) or PFS (hazard ratio [HR], 0.65; P = .363). Cetuximab significantly improved RR (CAPOX v CAPOX+C: after chemotherapy, 51% v 71%, respectively; P = .038; after chemoradiation, 75% v 93%, respectively; P = .028) and OS (HR, 0.27; P = .034). Skin toxicity and diarrhea were more frequent in the CAPOX+C arm. CONCLUSION: Cetuximab led to a significant increase in RR and OS in patients with KRAS/BRAF wild-type rectal cancer, but the primary end point of improved CR was not met.
Resumo:
BACKGROUND: PCR detects clonal rearrangements of the Ig gene in lymphoproliferative disorders. False negativity occurs in germinal centre/post-germinal centre lymphomas (GC/PGCLs) as they display a high rate of somatic hypermutation (SHM), which causes primer mismatching when detecting Ig rearrangements by PCR. AIMS: To investigate the degree of SHM in a group of GC/PGCLs and assess the rate of false negativity when using BIOMED-2 PCR when compared with previously published strategies. METHODS: DNA was isolated from snap-frozen tissue from 49 patients with GC/PGCL (23 diffuse large B cell lymphomas (DLBCLs), 26 follicular lymphomas (FLs)) and PCR-amplified for complete (VDJH), incomplete (DJH) and Ig kappa/lambda rearrangements using the BIOMED-2 protocols, and compared with previously published methods using consensus primers. Germinal centre phenotype was defined by immunohistochemistry based on CD10, Bcl-6 and MUM-1. RESULTS: Clonality detection by amplifying Ig rearrangements using BIOMED-2 family-specific primers was considerably higher than that found using consensus primers (74% DLBCL and 96% FL vs 69% DLBCL and 73% FL). Addition of BIOMED-2 DJH rearrangements increased detection of clonality by 22% in DLBCL. SHM was present in VDJH rearrangements from all patients with DLBCL (median (range) 5.7% (2.5-13.5)) and FL (median (range) 5.3% (2.3-11.9)) with a clonal rearrangement. CONCLUSIONS: Use of BIOMED-2 primers has significantly reduced the false negative rate associated with GC/PGCL when compared with consensus primers, and the inclusion of DJH rearrangements represents a potential complementary target for clonality assessment, as SHM is thought not to occur in these types of rearrangements.