173 resultados para Solvents.
Resumo:
The extraction of both UO22+ and trivalent lanthanide and actinide ions (Am3+, Nd3+, Eu3+) by dialkylphosphoric or dialkylphosphinic acids from aqueous solutions into the ionic liquid, 1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide has been studied and compared to extractions into dodecane. Radiotracer partitioning measurements show comparable patterns of distribution ratios for both the ionic liquid/aqueous and dodecane/aqueous systems, and the limiting slopes at low acidity indicate the partitioning of neutral complexes in both solvent systems. The metal ion coordination environment, elucidated from EXAFS and UV-visible spectroscopy measurements, is equivalent in the ionic liquid and dodecane solutions with coordination of the uranyl cation by two hydrogen-bonded extractant dimers, and of the trivalent cations by three extractant dimers. This is the first definitive report of a system where both the biphasic extraction equilibria and metal coordination environment are the same in an ionic liquid and a molecular organic solvent.
Resumo:
The oxidation of hydrogen was studied at an activated platinum micro-electrode by cyclic voltammetry in the following ionic liquids: [C(2)mim][NTf2], [C(4)mim][NTf2], [N-6.2.2.2][NTf2], [P-14.6.6.6][NTf2], [C(4)mim][OTf], [C(4)mim][BF4] [C(4)mim][PF6], [C(4)mim][NO3], [C(6)mim]Cl and [C(6)mim][FAP] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [N-6,N-2,N-2,N-2](+) = n-hexyltriethylammonium, [P-14,P-6,P-6,P-6](+) = tris(n-hexyltetradecyl) phosphonium, [NTf2](-) = bis(trifluoromethylsulfonyl)amide, [OTf] = trifluoromethlysulfonate and [FAP](-) = tris(perfluoroethyl)trifluorophosphate). Activation of the Pt electrode was necessary to obtain reliable and reproducible voltammetry. After activation of the electrode, the H-2 oxidation waves were nearly electrochemically and chemically reversible in [C(n)mim][NTf2] ionic liquids, chemically irreversible in [C(6)mim]Cl and [C(4)mim][NO3], and showed intermediate characteristics in OTf-, [BF4](-), [PF6](-), [FAP](-) and other [NTf2](-)-based ionic liquids. These differences reflect the contrasting interactions of protons with the respective RTIL anions. The oxidation peaks are reported relative to the half-wave potential of the cobaltocenium/cobaltocene redox couple in all ionic liquids studied, giving an indication of the relative proton interactions of each ionic liquid. A preliminary temperature study (ca. 298-333 K) has also been carried out in some of the ionic liquids. Diffusion coefficients and solubilities of hydrogen at 298 K were obtained from potential-step chronoamperometry, and there was no relationship found between the diffusion coefficients and solvent viscosity. RTILs possessing [NTf2](-) and [FAP](-) anions showed the highest micro-electrode peak currents for the oxidation in H-2 saturated solutions, with[C(4)mim][NTf2] toeing the most sensitive. The large number of available RTIL anion/cation pairs allows scope for the possible electrochemical detection of hydrogen gas for use in gas sensor technology. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Measurements on the diffusion coefficient of the neutral molecule N,N,N',N'-tetramethyl-para-phenylenediamine and the radical cation and dication generated by its one- and two-electron oxidation, respectively, are reported over the range 298-348 K in both acetonitrile and four room temperature ionic liquids (RTILs). Data were collected using single and double potential step chronamperometry at a gold disk electrode of micrometer dimension, and analysed via fitting to the appropriate analytical expression or, where necessary, to simulation. The variation of diffusion coefficient with temperature was found to occur in an Arrhenius-type manner for all combinations of solute and solvent. For a given ionic liquid, the diffusional activation energies of each species were not only closely equivalent to each other, but also to the RTIL's activation energy of viscous flow. In acetonitrile supported with 0.1 M tetrabutylammonium perchlorate, the ratio in diffusion coefficients of the radial cation and dication tot he neutral molecule were calculated as 0.89 +/- 0.05 and 0.51 +/- 0.03, respectively. In contrast, amongst the ionic liquids the same ratios were determined to be on average 0.53 +/- 0.04 and 0.33 +/- 0.03. The consequences of this dissimilarity are considered in terms of the modelling of voltammetric data gathered within ionic liquid solvents.
Resumo:
The Heck arylation of 2-methylprop-2-en- I -ol in ionic liquids and organic solvents is reported using a range of homogeneous and heterogeneous palladium catalysts. Higher activity is observed in the ionic liquid media compared with N-methyl pyrrolidinone and under solventless conditions. The ionic liquid-catalyst system may be recycled easily with little loss in activity, although significant palladium leaching from the heterogeneous catalyst was observed. In the case of Trans-bis(2,3-dihydro-3-methylbenzothiazole-2-ylidene)diiodopalladium (11) reported to be highly active for this transformation, significant induction petiods were observed indicating that nanoparticles may be responsible for the catalysis. Using the ionic liquid Heck reaction, a recyclable synthesis for the fragrance beta-Lilial((R)) has been developed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
There are now more than 1200 papers a year describing research results using the 'neoteric' solvents, known as ionic liquids (ILs). If ILs are such highly studied solvents, why has there been so comparatively little research in their use in crystallization? Here we explore this question and discuss possible strategies for utilization of the mundane and the unique aspects of ILs for novel crystallization strategies including crystallization of high and low melting solids using thermal shifts; ''solvothermal'' techniques; slow diffusion; electrocrystallization; and use of a co-solvent. The results presented here and those appearing in the literature indicate both the complex nature of these solvents and their promise in delivering unique solvation, metal ion coordination numbers, coordination polymer motifs, and metal-anion interactions, to name but a few. These complex, but fascinating, results and the promise of much more intimate control over crystallization processes will drive a growing interest in using ILs as crystallization solvents.
Resumo:
Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1,3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF6] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF6] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF6] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF,] phase. it was also shown that the specific activity of the biocatalyst in the water-[bmim][PF6] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The palladium-catalyzed copolymerization of styrene and CO in an ionic liquid solvent, 1-hexylpyridinium bis(trifluoromethanesulfonyl) imide, gave improved yields and increased molecular weights compared to polymerizations run in methanol.
Resumo:
It is shown that ionic liquids are promising solvents for near-infrared emitting lanthanide complexes, because ionic liquids are polar non-coordinating solvents that can solubilize lanthanide complexes. Neodymium(III) tosylate, bromide, triflate and sulfonylimide complexes were dissolved in 1-alkyl-3-methylimidazolium ionic liquids that contain the same anion as the neodymium(III) complexes. Near-infrared luminescence spectra of these neodymium(III) salts were measured by direct excitation of the neodymium(III) ion. The absorption spectra show detailed crystal-field fine structure and Judd-Ofelt parameters have been determined. Intense near-infrared luminescence was observed upon ligand excitation for neodymium(III) complexes with 1,10-phenanthroline or beta-diketonate ligands. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical reduction of the disperse azo dyes Red1, Red13 and Orange1 (Or1) was investigated in the RTILs [C(4)mim][NTf2] and [C(4)mpyrr][NTf2], and in contrast with their behavior in conventional aprotic solvents, was shown to proceed via a reversible one electron step to form stable radical anion, which is further reduced at more negative potentials to the dianion. In [C(4)mpyrr][NTf2], cleavage of the N-H bond on the secondary amine was inferred for Orange1, and the ease at which this cleavage occurred is rationalized in terms of acidity of the amine moiety. The ease of reduction was observed to decrease in the order Or1 > Red13 > Red1, and is related to the electron delocalization within the molecule and the electron withdrawing power of the substituents.
Resumo:
Asymmetric hydrogenation of methyl acetoacetate to methyl (R)-3-hydroxybutyrate by [(R)-RuCl(binap)( p-cymen)] Cl has been studied in methanol-ionic liquid and methanol-dense CO(2) solvent systems. The ionic pairs triethylhexylammonium and 1-methylimidazolium with bis(trifluoromethane sulfonyl) imide and hexafluorophosphates were used. The role of ionic pairs on the kinetic parameters and (enantio) selectivity has been demonstrated. Although the CO(2) expanded methanol system suffered from a reduction in both reaction rate and product selectivity, this changed in the presence of water. The high selectivity of the optimized methanol-CO(2)-water-halide system was designed as a consequence of observed additive effects.