48 resultados para Solution chemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tea waste (TW) and Date pits (DP) were investigated for their potential to remove toxic Cr(VI) ions from aqueous solution. Investigations showed that the majority of the bound Cr(VI) ions were reduced to Cr(III) after biosorption at acidic conditions. The electrons for the reduction of Cr(VI) may have been donated from the TW and DP biomasses. The experimental data obtained for Cr(VI)-TW and Cr(VI)-DP at different solution temperatures indicate a multilayer type biosorption, which explains why the Sips isotherm accurately represents the experimental data obtained in this study. The Sips maximum biosorption capacities of Cr(VI) onto TW and DP were 5.768 and 3.199 mmol/g at 333 K, respectively, which is comparatively superior to most other low-cost biomaterials. Fourier transform infrared spectroscopic analysis of the metal loaded biosorbents confirmed the participation of -COOH, -NH and O-CH groups in the reduction and complexation of chromium. Thermodynamic parameters demonstrated that the biosorption of Cr(VI) onto TW and DP biomass was endothermic, spontaneous and feasible at 303-333 K. The results evidently indicated that tea waste and date pits would be suitable biosorbents for Cr(VI) in wastewater under specific conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transport properties (adsorption and aggregation behavior) of virus-like particles (VLPs) of two strains of norovirus ("Norwalk" GI.1 and "Houston" GII.4) were studied in a variety of solution chemistries. GI.1 and GII.4 VLPs were found to be stable against aggregation at pH 4.0-8.0. At pH 9.0, GI.1 VLPs rapidly disintegrated. The attachment efficiencies (a) of GI.1 and GII.4 VLPs to silica increased with increasing ionic strength in NaCl solutions at pH 8.0. The attachment efficiency of GI.1 VLPs decreased as pH was increased above the isoelectric point (pH 5.0), whereas at and below the isoelectric point, the attachment efficiency was erratic. Ca(2+) and Mg(2+) dramatically increased the attachment efficiencies of GI.1 and GII.4 VLPs, which may be due to specific interactions with the VLP capsids. Bicarbonate decreased attachment efficiencies for both GI.1 and GII.4 VLPs, whereas phosphate decreased the attachment efficiency of GI.1, while increasing GII.4 attachment efficiency. The observed differences in GI.1 and GII.4 VLP attachment efficiencies in response to solution chemistry may be attributed to differential responses of the unique arrangement of exposed amino acid residues on the capsid surface of each VLP strain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[AuAg3(C6F5)(CF3CO2)(3)(CH2PPh3)](n) (2) was prepared by reaction of [Au(C6F5)(CH2PPh3)] (1) and [Ag(CF3CO2)] (1:3). The crystal structures of complexes I and 2 were determined by X-ray diffraction, and the latter shows a polymeric 2D arrangement built by Au - Ag, Ag - Ag, and Ag - O contacts. The metallophilic interactions observed in 2 in the solid state seem to be preserved in concentrated THF solutions, as suggested by EXAFS, pulsed-gradient spin-echo NMR, and photophysical studies, which showed that the structural motif [AuAg3(C6F5)(CF3CO2)(3)(CH2PPh3)] is maintained under such conditions. Time-dependent DFT calculations agree with the experimental photophysical energies and suggest a metal-to-ligand charge-transfer phosphorescence process. Ab initio calculations give an estimated interaction energy of around 60 kJ mol(-1) for each Au - Ag interaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neutron diffraction has been used to investigate the liquid structure of a 1:2 solution of phenol in the ionic liquid N-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide at 60 ◦C, using the empirical potential structure refinement (EPSR) process to model the data obtained from the SANDALS diffractometer at ISIS. Addition of phenol results in suppression of the melting point of the pyridinium salt and formation of a room temperature solution with aromatic phenol–cation and phenol-OH to anion hydrogen-bonding interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental values for the solubility of carbon dioxide and hydrogen in three room temperature ionic liquids based on the same anion- (bistrifluoromethylsulfonyl)imide [Ntf2]-and three different cations-1-butyl-3-methylimidazolium, [C4mim], 1-ethyl-3- methylimidazolium, [C2mim] and trimethyl-butylammonium, [N 4111]-are reported between 283 and 343 K and close to atmospheric pressure. Carbon dioxide, with a mole-fraction solubility of the order of 10-2, is two orders of magnitude more soluble than hydrogen. The solubility of CO2 is very similar in the three ionic liquids although slightly lower in the presence of the [C2mim] cation. In the case of H2, noticeable differences were observed with larger mole fraction solubilities in the presence of [N4111] followed by [C 4mim]. All of the mole-fraction solubilities decrease with increasing temperature. From the variation of Henry's law constants with temperature, the thermodynamic functions of solvation were calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations, is always better than ±1%. © Springer Science+Business Media, LLC 2007.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alkali activated slag (AAS) is an alternative cementitious material. Sodium silicate solution is usually used to activate ground granulated blast furnace slag to produce AAS. As a consequence, the pore solution chemistry of AAS differs from that of Portland cement (PC). Although AAS offers many advantages over PC, such as higher strength, superior resistance to acid and sulphate environments and lower embodied carbon due to 100% PC replacement, there is a need to assess its performance against chloride induced corrosion duo to its different pore solution chemistry. For PC systems, resistivity measurement, as a type of nondestructive test, is usually used to evaluate its chloride diffusivity and the corrosion rate of the embedded steel. However, due to the different pore solution chemistry present in the different AAS systems, the application of this test in AAS concretes would be questionable as the resistivity of concrete is highly dependent on its conductivity of the pore solution. Therefore, a study was carried out using twelve AAS concretes mixes, the results of which are reported in this paper. The AAS mixes were designed with alkali concentration of 4%, 6% and 8% (Na2O% of the mass of slag) and modulus (Ms) of sodium silicate solution of 0.75, 1.00, 1.50 and 2.00. A PC concrete with the same binder content as the AAS concretes was also studied as a reference. The chloride diffusion coefficient was determined using a non-steady state chloride diffusion test (NT BUILD 443). The resistivity of the concretes before the diffusion test was also measured. Macrocell corrosion current (corrosion rate) for steel rods embedded in the concretes was measured whilst subjecting the concretes to a cyclic chloride ponding regime (1 day ponded with salt solution and 6 days drying). The results showed that the AAS concretes had lower chloride diffusivity with associated higher resistivity than the PC concrete. The measured corrosion rate was also lower for the AAS concretes. However, unlike the PC, in which a higher resistivity yields a lower diffusivity and corrosion rate, there was no relationship apparent between the resistivity and either the diffusivity or the corrosion rate of steel for the AAS concretes. This is assigned to the variation of the pore solution composition of the AAS concretes. This also means that resistivity measurements cannot be depended on for assessing the chloride induced corrosion resistance of AAS concretes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solubility of carbon dioxide in five tetraalkylphosphonium superbase ionic liquids, namely the trihexyltetradecylphoshonium phenoxide, trihexyltetradecylphoshonium benzotriazolide, trihexyltetradecylphoshonium benzimidazolide, trihexyltetradecylphoshonium 1,2,3-triazolide, and trihexyltetradecylphoshonium 1,2,4-triazolide was studied experimentally under dry and wet conditions at 22 A degrees C and at atmospheric pressure, using a gravimetric saturation technique. The effects of anion structure and of the presence or absence of water in the solution on the carbon dioxide solubility were then deduced from the data. H-1 and C-13-NMR spectroscopy and ab initio calculations were also conducted to probe the interactions in these solutions, as carbon dioxide and water can compete in the ionic liquid structure during the absorption process. Additionally, the viscosity of selected superbase ionic liquids was measured under dry and wet conditions, in the presence or absence of CO2, to evaluate their practical application in carbon dioxide capture processes. Finally, the recyclability of the trihexyltetradecylphoshonium 1,2,4-triazolide under dry and wet conditions was determined to probe the ability of selected solvents to solubilize chemically a high concentration of carbon dioxide and then release it in a low energy demand process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herein, the N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)amide and the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)amide room temperature ionic liquids, combined with the lithium bis(trifluoromethanesulfonyl)amide salt, are investigated as electrolytes for Li/LiNi1/3Mn1/3Co1/3O2 (Li/NMC) batteries. To conduct this study, volumetric properties, ionic conductivity and viscosity of the pure ionic liquids and selected electrolytes were firstly determined as a function of temperature and composition in solution. These data were then compared with those measured in the case of the standard alkyl carbonate-based electrolyte: e.g. the EC/PC/3DMC + 1 mol·L−1 LiPF6. The compatibility of the selected electrolytes with the lithium electrode was then investigated by following the evolution of Li/electrolyte interfaces through impedance measurements. Interestingly, the impedances of the investigated Li/electrolyte interfaces were found to be more than three times lower than that measured using the standard electrolyte. Finally, electrochemical performances of the ionic liquid-based electrolytes were investigated using galvanostatic charge and discharge and cyclic voltammetry of each Li/NMC cell. Using these electrolytes, each tested Li cell reaches up to 145 mA·h·g−1 at C/10 and 110 mA·h·g−1 at C with a coulombic efficiency close to 100 %.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herein, we report the densities and speeds of sound in binary mixtures of three hydrophobic and one hydrophilic ionic liquids: 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C4mim][NTf2], 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide, [C4mpyr][NTf2], 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C3mim][NTf2] and 1-ethyl-3-methylimidazolium thiocyanate, [C2mim][SCN], with water at 298.15 K and 0.1 MPa. The concentration range of water, which encompassed relatively small values well below the saturation point, is often regarded as an impurity for hydrophobic ionic liquids. On the basis of experimental results the molar volume, adiabatic molar compressibility, partial molar volume and apparent molar volume, as well as, partial molar and apparent molar isentropic compressibility properties were then calculated. Interesting results are obtained using the solutions based on the hydrophilic [C2mim][SCN], since these mixtures are characterized by relatively low density and high values of speed of sound. Furthermore, the partial molar volumes and partial molar adiabatic compressibilities of water in solution with [C2mim][SCN] are the lowest among the investigated in mixtures with ionic liquids. However, in the case of the hydrophobic ionic liquid solutions, only small differences are observed for molar adiabatic compressibilities with the change of the cation structure, i.e. for water + [C4mim][NTf2] or + [C4mpyr][NTf2]. A more pronounced difference has been observed for the partial molar compressibility of water in solutions with these two ionic liquids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we address the thermal properties of selected members of a
homologous series of alkyltriethylammonium bisf(trifluoromethyl)sulfonylgimide ionic
liquids. Their phase and glass transition behavior, as well as their standard isobaric heat
capacities at 298.15 K, were studied using differential scanning calorimetry (DSC),
whereas their decomposition temperature was determined by thermal gravimetry analysis.
DSC was further used to measure standard molar heat capacities of the studied ionic liquids
and standard molar heat capacity as a function of temperature for hexyltriethylammonium,
octyltriethylammonium, and dodecyltriethylammonium bisf(trifluoromethyl)sulfonylgimide
ionic liquids. Based on the data obtained, we discuss the influence of the alkyl chain
length of the cation on the studied ionic liquids on the measured properties. Using viscosity
data obtained in a previous work, the liquid fragility of the ionic liquids is then discussed.
Viscosity data were correlated by the VTF equation using a robust regression along a
gnostic influence function. In this way, more reliable VTF model parameters were obtained than in our previous work and a good estimate of the liquid fragility of the ionic liquids was made.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the relative performance of alkali activated slag (AAS) concretes in comparison to Portland cement (PC) counterparts for chloride transport and resulting corrosion of steel bars is not clear, an investigation was carried out and the results are reported in this paper. The effect of alkali concentration and modulus of sodium silicate solution used in AAS was studied. Chloride transport and corrosion properties were assessed with the help of electrical resistivity, non-steady state chloride diffusivity, onset of corrosion, rate of corrosion and pore solution chemistry. It was found that: (i) although chloride content at surface was higher for the AAS concretes, they had lower chloride diffusivity than PC concrete; (ii) pore structure, ionic exchange and interaction effect of hydrates strongly influenced the chloride transport in the AAS concretes; (iii) steel corrosion resistance of the AAS concretes was comparable to that of PC concrete under intermittent chloride ponding regime, with the exception of 6% Na2O and Ms of 1.5; (iv) the corrosion behaviour of the AAS concretes was significantly influenced by ionic exchange, carbonation and sulphide concentration; (v) the increase of alkali concentration of the activator generally increased the resistance of AAS concretes to chloride transport and reduced its resulting corrosion, and a value of 1.5 was found to be an optimum modulus for the activator for improving the chloride transport and the corrosion resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The studies on chloride induced corrosion of steel bars in alkali activated slag (AAS) concretes are scarcely reported in the past. In order to make this issue clearer and compare the corrosion performance of AAS with Portland cement (PC) counterpart, an investigation was carried out and the results are reported in this paper. Corrosion properties were assessed with the help of rate of corrosion, electrical resistivity and pore solution chemistry. It was found that: (i) steel corrosion resistance of the AAS concretes was comparable or in some cases even worse than that of Portland cement (PC) concrete under intermittent chloride ponding regime; (ii) the corrosion behaviour of the AAS concretes was significantly influenced by ionic exchange, carbonation and sulphide concentration; (iii) the increase of alkali concentration of the activator generally reduced chloride resulting corrosion, and a value of 1.5 was found to be an optimum modulus for the activator for improving the corrosion resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural mineral-water interface reactions drive ecosystem/global fluoride (F−) cycling. These small-scale processes prove challenging to monitoring due to mobilization being highly localized and variable; influenced by changing climate, hydrology, dissolution chemistries and pedogenosis. These release events could be captured in situ by the passive sampling technique, diffusive gradients in thin-films (DGT), providing a cost-effective and time-integrated measurement of F− mobilization. However, attempts to develop the method for F− have been unsuccessful due to the very restrictive operational ranges that most F−-absorbents function within. A new hybrid-DGT technique for F− quantification containing a three-phase fine particle composite (Fesingle bondAlsingle bondCe, FAC) adsorbent was developed and evaluated. Sampler response was validated in laboratory and field deployments, passing solution chemistry QC within ionic strength and pH ranges of 0–200 mmol L−1 and 4.3–9.1, respectively, and exhibiting high sorption capacities (98 ± 8 μg cm−2). FAC-DGT measurements adequately predicted up to weeklong averaged in situ F− fluvial fluxes in a freshwater river and F− concentrations in a wastewater treatment flume determined by high frequency active sampling. While, millimetre-scale diffusive fluxes across the sediment-water interface were modeled for three contrasting lake bed sediments from a F−-enriched lake using the new FAC-DGT platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis, complexation, and photophysical properties of the Eu(III)-based quinoline cyclen conjugate complex Eu1 and its permanent, noncovalent incorporation into hydrogels as sensitive, interference-free pH sensing materials for biological media are described. The Eu(III) emission in both solution and hydrogel media was switched reversibly on-off as a function of pH with a large, greater than order of magnitude enhancement in Eu(III) emission. The irreversible incorporation of Eu1 into water-permeable hydrogels was achieved using poly[methyl methacrylate-co-2-hydroxyethyl methacrylate]- based hydrogels, and the luminescent properties of the novel sensor materials, using confocal laser- scanning microscopy and steady state luminescence, were characterized and demonstrated to be retained with respect to solution behavior. Water uptake and dehydration behavior of the sensor-incorporated materials was also characterized and shown to be dependent on the material composition.