38 resultados para Soft chemical method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of cobalt-doped ZnO nanowires is achieved using a simple, metal salt decomposition growth technique. A sequence of drop casting on a quartz substrate held at 100 degrees C and annealing results in the growth of nanowires of average (modal) length similar to 200 nm and diameter of 15 +/- 4 nm and consequently an aspect ratio of similar to 13. A variation in the synthesis process, where the solution of mixed salts is deposited on the substrate at 25 degrees C, yields a grainy film structure which constitutes a useful comparator case. X-ray diffraction shows a preferred [0001] growth direction for the nanowires while a small unit cell volume contraction for Co-doped samples and data from Raman spectroscopy indicate incorporation of the Co dopant into the lattice; neither technique shows explicit evidence of cobalt oxides. Also the nanowire samples display excellent optical transmission across the entire visible range, as well as strong photoluminescence (exciton emission) in the near UV, centered at 3.25 eV. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Melt viscosity is a key indicator of product quality in polymer extrusion processes. However, real time monitoring and control of viscosity is difficult to achieve. In this article, a novel “soft sensor” approach based on dynamic gray-box modeling is proposed. The soft sensor involves a nonlinear finite impulse response model with adaptable linear parameters for real-time prediction of the melt viscosity based on the process inputs; the model output is then used as an input of a model with a simple-fixed structure to predict the barrel pressure which can be measured online. Finally, the predicted pressure is compared to the measured value and the corresponding error is used as a feedback signal to correct the viscosity estimate. This novel feedback structure enables the online adaptability of the viscosity model in response to modeling errors and disturbances, hence producing a reliable viscosity estimate. The experimental results on different material/die/extruder confirm the effectiveness of the proposed “soft sensor” method based on dynamic gray-box modeling for real-time monitoring and control of polymer extrusion processes. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc oxide is synthesised at low temperature (80A degrees C) in nanosheet geometry using a substrate-free, single-step, wet-chemical method and is found to act as a blue-white fluorophore. Investigation by atomic force microscopy, electron microscopy, and X-ray diffraction confirms zinc oxide material of nanosheet morphology where the individual nanosheets are polycrystalline in nature with the crystalline structure being of wurtzite character. Raman spectroscopy indicates the presence of various defects, while photoluminescence measurements show intense green (centre wavelength approximately 515 nm) blue (approximately 450 nm), and less dominant red (approximately 640 nm) emissions due to a variety of vacancy and interstitial defects, mostly associated with surfaces or grain boundaries. The resulting colour coordinate on the CIE-1931 standard is (0.23, 0.33), demonstrating potential for use as a blue-white fluorescent coating in conjunction with ultraviolet emitting LEDs. Although the defects are often treated as draw-backs of ZnO, here we demonstrate useful broadband visible fluorescence properties in as-prepared ZnO. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Na-doped Birnessite-type manganese oxide (d-MnO) has been synthesized using the chemical method and characterized through X-ray diffraction and SEM, showing the lamellar structure and high crystal structure. A comparative study of the electrochemical performances of this material with those of the commercial Cryptomelane-type MnO has then been undertaken in ten neutral aqueous electrolytes for supercapacitor applications. Aqueous electrolytes, containing a lithium salt, LiX (where X = SO , NO, CHCO , CHSO, ClO , CHCO, TFSI, Beti, BOB, or Lact), have been first prepared under neutral pH conditions to reach the salt concentration, providing the maximum in conductivity. Their transport properties are then investigated through conductivities, viscosities, and self-diffusion coefficient measurements. Second, the thermal behaviors of these electrolytic aqueous solutions are then evaluated by using a differential scanning calorimeter from (213.15 to 473.15) K in order to access their liquid range temperatures. Cyclic voltammograms (CV) in three electrode configurations are thereafter investigated using Na Birnessite and Cryptomelane as working electrode material from (-0.05 to 1.5) V versus Ag/AgCl at various sweep rates from (2 to 100) mV·s. According to anion nature/structure and manganese oxide material type, different CV responses are observed, presenting a pure capacitive profile for Beti or CH CO and an additional pseudocapacitive signal for the smallest anions, such as ClO and NO . The capacitances, energies, and efficiencies are finally calculated. These results indicate clearly that electrolytes based on a mineral lithium salt under neutral pH condition and high salt concentration (up to 5 mol·L) have better electrochemical performances than organic ones, up to 1.4 V with good material stability and capacity retention. The relationship between transport properties, electrostatic and steric hindrance considerations of hydrated ions, and their electrochemical performances is discussed in order to understand further the lithium intercalation-deintercalation processes in the lamellar or tunnel structure of investigated MnO. © 2013 American Chemical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report describes a novel technology for arsenic removal from groundwater. The work was carried out in India in collaboratio with three Indian and three European partners. European partners include Leiden University of the Netherlands and Stuttgart University of Germany. The work was funded by The World Bank.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Massively parallel networks of highly efficient, high performance Single Instruction Multiple Data (SIMD) processors have been shown to enable FPGA-based implementation of real-time signal processing applications with performance and
cost comparable to dedicated hardware architectures. This is achieved by exploiting simple datapath units with deep processing pipelines. However, these architectures are highly susceptible to pipeline bubbles resulting from data and control hazards; the only way to mitigate against these is manual interleaving of
application tasks on each datapath, since no suitable automated interleaving approach exists. In this paper we describe a new automated integrated mapping/scheduling approach to map algorithm tasks to processors and a new low-complexity list scheduling technique to generate the interleaved schedules. When applied to a spatial Fixed-Complexity Sphere Decoding (FSD) detector
for next-generation Multiple-Input Multiple-Output (MIMO) systems, the resulting schedules achieve real-time performance for IEEE 802.11n systems on a network of 16-way SIMD processors on FPGA, enable better performance/complexity balance than current approaches and produce results comparable to handcrafted implementations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultrasonic measurement and imaging of tissue elasticity is currently under wide investigation and development as a clinical tool for the assessment of a broad range of diseases, but little account in this field has yet been taken of the fact that soft tissue is porous and contains mobile fluid. The ability to squeeze fluid out of tissue may have implications for conventional elasticity imaging, and may present opportunities for new investigative tools. When a homogeneous, isotropic, fluid-saturated poroelastic material with a linearly elastic solid phase and incompressible solid and fluid constituents is subjected to stress, the behaviour of the induced internal strain field is influenced by three material constants: the Young's modulus (E(s)) and Poisson's ratio (nu(s)) of the solid matrix and the permeability (k) of the solid matrix to the pore fluid. New analytical expressions were derived and used to model the time-dependent behaviour of the strain field inside simulated homogeneous cylindrical samples of such a poroelastic material undergoing sustained unconfined compression. A model-based reconstruction technique was developed to produce images of parameters related to the poroelastic material constants (E(s), nu(s), k) from a comparison of the measured and predicted time-dependent spatially varying radial strain. Tests of the method using simulated noisy strain data showed that it is capable of producing three unique parametric images: an image of the Poisson's ratio of the solid matrix, an image of the axial strain (which was not time-dependent subsequent to the application of the compression) and an image representing the product of the aggregate modulus E(s)(1-nu(s))/(1+nu(s))(1-2nu(s)) of the solid matrix and the permeability of the solid matrix to the pore fluid. The analytical expressions were further used to numerically validate a finite element model and to clarify previous work on poroelastography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. The purpose of this study is to demonstrate the rational design and behaviour of the first dual mode optical and chemical prodrug, exemplified by an acetyl salicylic acid-based system. Methods. A cyclic 1,4-benzodioxinone prodrug was synthesised by reaction of 3,5-dimethoxybenzoin and acetyl salicoyl chloride with pyridine. After purification by column chromatography and recrystallization, characterization was achieved using infrared and NMR spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. Light-triggered drug liberation was characterised via UV-visible spectroscopy following low-power 365 nm irradiation for controlled times. Chemical drug liberation was characterised via UV-visible spectroscopy in pH 5.5 solution. Results. The synthetic method yielded pure prodrug, with full supporting characterisation. Light-triggered drug liberation proceeded at a rate of 8.30 10j2 sj1, while chemical, hydrolytic liberation proceeded independently at 1.89 10j3 sj1. The photochemical and hydrolytic reactions were both quantitative. Conclusions. This study demonstrates the first rational dual-mode optical and chemical prodrug, using acetyl salicylic acid as a model, acting as a paradigm for future dual-mode systems. Photochemical drug liberation proceeds 44 times faster than chemical liberation, suggesting potential use in drug-eluting medical devices where an additional burst of drug is required at the onset of infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absolute and differential chemical abundances are presented for the largest group of massive stars in M31 studied to date. These results were derived from intermediate resolution spectra of seven B-type supergiants, lying within four OB associations covering a galactocentric distance of 5-12 kpc. The results are mainly based on an LTE analysis, and we additionally present a full non-LTE, unified model atmosphere analysis of one star (OB 78-277) to demonstrate the reliability of the differential LTE technique. A comparison of the stellar oxygen abundance with that of previous nebular results shows that there is an off set of between similar to0.15-0.4 dex between the two methods which is critically dependent on the empirical calibration adopted for the R 23 parameter with [O/H]. However within the typical errors of the stellar and nebular analyses (and given the strength of dependence of the nebular results on the calibration used) the oxygen abundances determined in each method are fairly consistent. We determine the radial oxygen abundance gradient from these stars, and do not detect any systematic gradient across this galactocentric range. We find that the inner regions of M31 are not, as previously thought, very "metal rich". Our abundances of C, N, O, Mg, Si, Al, S and Fe in the M31 supergiants are very similar to those of massive stars in the solar neighbourhood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a novel method to simulate hydrated macromolecules with a dielectric continuum representation of the surrounding solvent. In our approach, the interaction between the solvent and the molecular degrees of freedom is described by means of a polarization density free energy functional which is minimum at electrostatic equilibrium. After a pseudospectral expansion of the polarization and a discretization of the functional, we construct the equations of motion for the system based on a Car-Parrinello technique. In the limit of the adiabatic evolution of the polarization field variables, our method provides the solution of the dielectric continuum problem "on the fly," while the molecular coordinates are propagated. In this first study, we show how our dielectric continuum molecular dynamics method can be successfully applied to hydrated biomolecules, with low cost compared to free energy simulations with explicit solvent. To our knowledge, this is the first time that stable and conservative molecular dynamic simulations of solutes can be performed for a dielectric continuum model of the solvent. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simulation scheme is proposed for determining the excess chemical potential of a substance in solution. First, a Monte Carlo simulation is performed with classical models for solute and solvent molecules. A representative sample of these configurations is then used in a hybrid quantum/classical (QM/MM) calculation, where the solute is treated quantum-mechanically, and the average electronic structure is used to construct an improved classical model. This procedure is iterated to self-consistency in the classical model, which in practice is attained in one or two steps, depending on the quality of the initial guess. The excess free energy of the molecule within the QM/MM approach is determined relative to the classical model using thermodynamic perturbation theory with a cumulant expansion. The procedure provides a method of constructing classical point charge models appropriate for the solution and gives a measure of the importance of solvent fluctuations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of routes to hydroxyiminodehydroquinate, one of the most potent inhibitors of type II dehydroquinase that is currently known, have been investigated. Methods based on the existing literature synthesis, i.e. oxime formation of a suitably C-4 and C-5 protected methyl 3-dehydroquinate derivative were initially studied. Benzoyl protection did give the desired product but in low overall yield. An alternative BBA protection strategy starting with a protected dehydroquinate was successful in generating a C4/C5 analogue of the desired oxime in high yield. Further investigation revealed that it was unecessary to protect the dehydroquinate precursor, hence the potassium salt corresponding to the desired oxime was simply synthesised as a single isomer from methyl dehydroquinate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modelling and control of nonlinear dynamical systems is a challenging problem since the dynamics of such systems change over their parameter space. Conventional methodologies for designing nonlinear control laws, such as gain scheduling, are effective because the designer partitions the overall complex control into a number of simpler sub-tasks. This paper describes a new genetic algorithm based method for the design of a modular neural network (MNN) control architecture that learns such partitions of an overall complex control task. Here a chromosome represents both the structure and parameters of an individual neural network in the MNN controller and a hierarchical fuzzy approach is used to select the chromosomes required to accomplish a given control task. This new strategy is applied to the end-point tracking of a single-link flexible manipulator modelled from experimental data. Results show that the MNN controller is simple to design and produces superior performance compared to a single neural network (SNN) controller which is theoretically capable of achieving the desired trajectory. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycoxidation and lipoxidation reactions contribute to the chemical modification of proteins during the Maillard reaction. Reactive oxygen species, produced during the oxidation of sugars and lipids in these processes, irreversibly oxidize proteins. Methionine is particularly susceptible to oxidation, yielding the oxidation product methionine sulfoxide (MetSO). Here we describe a method for the analysis of MetSO using proteomic techniques. Using these techniques, we measured MetSO formation on the model protein RNase during aerobic incubations with glucose and arachidonate. We also evaluated the susceptibility of MetSO to reduction by NaBH4, a commonly used reductant in the analysis of Maillard reaction products.