2 resultados para Single-platform Trucount Assay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cobas® (Roche) portfolio of companion diagnostics in oncology currently has three assays CE-marked for in vitro diagnostics. Two of these (EGFR and BRAF) are also US FDA-approved. These assays detect clinically relevant mutations that are correlated with response (BRAF, EGFR) or lack of response (KRAS) to targeted therapies such as selective mutant BRAF inhibitors in malignant melanoma, tyrosine kinases inhibitor in non-small cell lung cancer and anti-EGFR monoclonal antibodies in colorectal cancer, respectively. All these assays are run on a single platform using DNA extracted from a single 5 µm section of a formalin-fixed paraffin-embedded tissue block. The assays provide an ‘end-to-end’ solution from extraction of DNA to automated analysis and report on the cobas z 480. The cobas tests have shown robust and reproducible performance, with high sensitivity and specificity and low limit of detection, making them suitable as companion diagnostics for clinical use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.