15 resultados para Simulation Environments


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a systematic measurement campaign of diversity reception techniques for use in multiple-antenna wearable systems operating at 868 MHz. The experiments were performed using six time-synchronized bodyworn receivers and considered mobile off-body communications in an anechoic chamber, open office area and a hallway. The cross-correlation coefficient between the signal fading measured by bodyworn receivers was dependent upon the local environment and typically below 0.7. All received signal envelopes were combined in post-processing to study the potential benefits of implementing receiver diversity based upon selection combination, equal-gain and maximal-ratio combining. It is shown that, in an open office area, the 5.7 dB diversity gain obtained using a dual-branch bodyworn maximal-ratio diversity system may be further improved to 11.1 dB if a six-branch system was used. First-and second-order theoretical equations for diversity reception techniques operating in Nakagami fading conditions were used to model the postdetection combined envelopes. Maximum likelihood estimates of the Nakagami-parameter suggest that the fading conditions encountered in this study were generally less severe than Rayleigh. The paper also describes an algorithm that may be used to simulate the measured output of an M-branch diversity combiner operating in independent and identically-distributed Nakagami fading environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Haptic information originates from a different human sense (touch), therefore the quality of service (QoS) required to supporthaptic traffic is significantly different from that used to support conventional real-time traffic such as voice or video. Each type ofnetwork impairment has different (and severe) impacts on the user’s haptic experience. There has been no specific provision of QoSparameters for haptic interaction. Previous research into distributed haptic virtual environments (DHVEs) have concentrated onsynchronization of positions (haptic device or virtual objects), and are based on client-server architectures.We present a new peerto-peer DHVE architecture that further extends this to enable force interactions between two users whereby force data are sent tothe remote peer in addition to positional information. The work presented involves both simulation and practical experimentationwhere multimodal data is transmitted over a QoS-enabled IP network. Both forms of experiment produce consistent results whichshow that the use of specific QoS classes for haptic traffic will reduce network delay and jitter, leading to improvements in users’haptic experiences with these types of applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a practical algorithm for the simulation of interactive deformation in a 3D polygonal mesh model. The algorithm combines the conventional simulation of deformation using a spring-mass-damping model, solved by explicit numerical integration, with a set of heuristics to describe certain features of the transient behaviour, to increase the speed and stability of solution. In particular, this algorithm was designed to be used in the simulation of synthetic environments where it is necessary to model realistically, in real time, the effect on non-rigid surfaces being touched, pushed, pulled or squashed. Such objects can be solid or hollow, and have plastic, elastic or fabric-like properties. The algorithm is presented in an integrated form including collision detection and adaptive refinement so that it may be used in a self-contained way as part of a simulation loop to include human interface devices that capture data and render a realistic stereoscopic image in real time. The algorithm is designed to be used with polygonal mesh models representing complex topology, such as the human anatomy in a virtual-surgery training simulator. The paper evaluates the model behaviour qualitatively and then concludes with some examples of the use of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose simple models to predict the performance degradation of disk requests due to storage device contention in consolidated virtualized environments. Model parameters can be deduced from measurements obtained inside Virtual Machines (VMs) from a system where a single VM accesses a remote storage server. The parameterized model can then be used to predict the effect of storage contention when multiple VMs are consolidated on the same server. We first propose a trace-driven approach that evaluates a queueing network with fair share scheduling using simulation. The model parameters consider Virtual Machine Monitor level disk access optimizations and rely on a calibration technique. We further present a measurement-based approach that allows a distinct characterization of read/write performance attributes. In particular, we define simple linear prediction models for I/O request mean response times, throughputs and read/write mixes, as well as a simulation model for predicting response time distributions. We found our models to be effective in predicting such quantities across a range of synthetic and emulated application workloads. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a trace-driven approach to predict the performance degradation of disk request response times due to storage device contention in consolidated virtualized environments. Our performance model evaluates a queueing network with fair share scheduling using trace-driven simulation. The model parameters can be deduced from measurements obtained inside Virtual Machines (VMs) from a system where a single VM accesses a remote storage server. The parameterized model can then be used to predict the effect of storage contention when multiple VMs are consolidated on the same virtualized server. The model parameter estimation relies on a search technique that tries to estimate the splitting and merging of blocks at the the Virtual Machine Monitor (VMM) level in the case of multiple competing VMs. Simulation experiments based on traces of the Postmark and FFSB disk benchmarks show that our model is able to accurately predict the impact of workload consolidation on VM disk IO response times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-thermocouple sensor characterization method for use in variable flow applications is proposed. Previous offline methods for constant velocity flow are extended using sliding data windows and polynomials to accommodate variable velocity. Analysis of Monte-Carlo simulation studies confirms that the unbiased and consistent parameter estimator outperforms alternatives in the literature and has the added advantage of not requiring a priori knowledge of the time constant ratio of thermocouples. Experimental results from a test rig are also presented. © 2008 The Institute of Measurement and Control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon carbide (SiC) is a material of great technological interest for engineering applications concerning hostile environments where silicon-based components cannot work (beyond 623 K). Single point diamond turning (SPDT) has remained a superior and viable method to harness process efficiency and freeform shapes on this harder material. However, it is extremely difficult to machine this ceramic consistently in the ductile regime due to sudden and rapid tool wear. It thus becomes non trivial to develop an accurate understanding of tool wear mechanism during SPDT of SiC in order to identify measures to suppress wear to minimize operational cost.

In this paper, molecular dynamics (MD) simulation has been deployed with a realistic analytical bond order potential (ABOP) formalism based potential energy function to understand tool wear mechanism during single point diamond turning of SiC. The most significant result was obtained using the radial distribution function which suggests graphitization of diamond tool during the machining process. This phenomenon occurs due to the abrasive processes between these two ultra hard materials. The abrasive action results in locally high temperature which compounds with the massive cutting forces leading to sp3–sp2 order–disorder transition of diamond tool. This represents the root cause of tool wear during SPDT operation of cubic SiC. Further testing led to the development of a novel method for quantitative assessment of the progression of diamond tool wear from MD simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an Invariant Information Local Sub-map Filter (IILSF) as a technique for consistent Simultaneous Localisation and Mapping (SLAM) in a large environment. It harnesses the benefits of sub-map technique to improve the consistency and efficiency of Extended Kalman Filter (EKF) based SLAM. The IILSF makes use of invariant information obtained from estimated locations of features in independent sub-maps, instead of incorporating every observation directly into the global map. Then the global map is updated at regular intervals. Applying this technique to the EKF based SLAM algorithm: (a) reduces the computational complexity of maintaining the global map estimates and (b) simplifies transformation complexities and data association ambiguities usually experienced in fusing sub-maps together. Simulation results show that the method was able to accurately fuse local map observations to generate an efficient and consistent global map, in addition to significantly reducing computational cost and data association ambiguities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Well planned natural ventilation strategies and systems in the built environments may provide healthy and comfortable indoor conditions, while contributing to a significant reduction in the energy consumed by buildings. Computational Fluid Dynamics (CFD) is particularly suited for modelling indoor conditions in naturally ventilated spaces, which are difficult to predict using other types of building simulation tools. Hence, accurate and reliable CFD models of naturally ventilated indoor spaces are necessary to support the effective design and operation of indoor environments in buildings. This paper presents a formal calibration methodology for the development of CFD models of naturally ventilated indoor environments. The methodology explains how to qualitatively and quantitatively verify and validate CFD models, including parametric analysis utilising the response surface technique to support a robust calibration process. The proposed methodology is demonstrated on a naturally ventilated study zone in the library building at the National University of Ireland in Galway. The calibration process is supported by the on-site measurements performed in a normally operating building. The measurement of outdoor weather data provided boundary conditions for the CFD model, while a network of wireless sensors supplied air speeds and air temperatures inside the room for the model calibration. The concepts and techniques developed here will enhance the process of achieving reliable CFD models that represent indoor spaces and provide new and valuable information for estimating the effect of the boundary conditions on the CFD model results in indoor environments. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation (DE) approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports an approach by which laboratory based testing and numerical modelling can be combined to predict the long term performance of a range of concretes exposed to marine environments. Firstly, a critical review of the test methods for assessing the chloride penetration resistance of concrete is given. The repeatability of the different test results is also included. In addition to the test methods, a numerical simulation model is used to explore the test data further to obtain long-term chloride ingress trends. The combined use of testing and modelling is validated with the help of long-term chloride ingress data from a North Sea exposure site. In summary, the paper outlines a methodology for determining the long term performance of concrete in marine environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural ventilation is a sustainable solution to maintaining healthy and comfortable environmental conditions in buildings. However, the effective design, construction and operation of naturally ventilated buildings require a good understanding of complex airflow patterns caused by the buoyancy and wind effects.The work presented in this article employed a 3D computational fluid dynamics (CFD) analysis in order to investigate environmental conditions and thermal comfort of the occupants of a highly-glazed naturally ventilated meeting room. This analysis was facilitated by the real-time field measurements performed in an operating building, and previously developed formal calibration methodology for reliable CFD models of indoor environments. Since, creating an accurate CFD model of an occupied space in a real-life scenario requires a high level of CFD expertise, trusted experimental data and an ability to interpret model input parameters; the calibration methodology guided towards a robust and reliable CFD model of the indoor environment. This calibrated CFD model was then used to investigate indoor environmental conditions and to evaluate thermal comfort indices for the occupants of the room. Thermal comfort expresses occupants' satisfaction with thermal environment in buildings by defining the range of indoor thermal environmental conditions acceptable to a majority of occupants. In this study, the thermal comfort analysis, supported by both field measurements and CFD simulation results, confirmed a satisfactory and optimal room operation in terms of thermal environment for the investigated real-life scenario. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing complexity and scale of cloud computing environments due to widespread data centre heterogeneity makes measurement-based evaluations highly difficult to achieve. Therefore the use of simulation tools to support decision making in cloud computing environments to cope with this problem is an increasing trend. However the data required in order to model cloud computing environments with an appropriate degree of accuracy is typically large, very difficult to collect without some form of automation, often not available in a suitable format and a time consuming process if done manually. In this research, an automated method for cloud computing topology definition, data collection and model creation activities is presented, within the context of a suite of tools that have been developed and integrated to support these activities.