191 resultados para Silicone gels
Resumo:
Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.
Resumo:
We previously reported nonaqueous silicone elastomer gels (SEGs) for sustained vaginal administration of the CCR5-targeted entry inhibitor maraviroc (MVC). Here, we describe chemically modified SEGs (h-SEGs) in which the hydrophobic cyclomethicone component was partially replaced with relatively hydrophilic silanol-terminated polydimethylsiloxanes (st-PDMS). MVC and emtricitabine (a nucleoside reverse transcriptase inhibitor), both currently under evaluation as topical microbicides to counter sexual transmission of human immunodeficiency virus type 1 (HIV-1), were used as model antiretroviral (ARV) drugs. Gel viscosity and in vitro ARV release were significantly influenced by st-PDMS molecular weight and concentration in the h-SEGs. Unexpectedly, gels prepared with lower molecular weight grades of st-PDMS showed higher viscosities. h-SEGs provided enhanced release over 24 h compared with aqueous hydroxyethylcellulose (HEC) gels, did not modify the pH of simulated vaginal fluid (SVF), and were shown to less cytotoxic than standard HEC vaginal gel. ARV solubility increased as st-PDMS molecular weight decreased (i.e., as percentage hydroxyl content increased), helping to explain the in vitro release trends. Dye ingression and SVF dilution studies confirmed the increased hydrophilicity of the h-SEGs. h-SEGs have potential for use in vaginal drug delivery, particularly for ARV-based HIV-1 microbicides.
Resumo:
Oxybutynin, a drug of choice in the treatment of urinary incontinence, has low oral bioavailability due to extensive first-pass metabolism. A toxic metabolite, N-desethyloxybutynin, has been linked to adverse reactions to oral oxybutynin. This study, therefore, reports on the design of an oxybutynin intravaginal ring (IVR) of reservoir design, comprising an oxybutynin silicone elastomer core encased in a non-medicated silicone sheath, manufactured by reaction injection moulding at 50oC. An unusually high initial burst release of oxybutynin (42.7 mg in 24 h) was observed in vitro with a full length core (100 mg drug loading), with subsequent non-zero order drug release. Use of fractional segment cores substantially reduced the burst effect, yielding linear cumulative drug release versus time plots from days 2 to 14. Thus, a 1/8 fractional segment core gave a 24 h burst of 11.28 mg oxybutynin and, thereafter, zero order release at the target dose of 5 mg/day over 14 days. Two oxybutynin cores, each 1/16 of full length, gave a greater release than a single 1/8 core, due to core segment end effects resulting in an increased surface area for release. The burst release was investigated by determining drug solubilities in the propan-1-ol product of elastomer condensation cure (390 mg/ml) and in the elastomer itself (13.9-20.21 mg/ml, by direct extraction and indirect thermal methods). These high oxybutynin solubilities were considered the major contributors to the burst effect. It was concluded that use of a fractional segment core would allow development of a suitable oxybutynin reservoir IVR.
Resumo:
Abstract There is considerable interest in developing medical devices that provide controlled delivery of biologically active agents, for example, to reduce the incidence of device-related infection. Silicone elastomers are one of the commonest biomaterials used in medical device production. However, they have a relatively high coefficient of friction and the resulting lack of lubricity can cause pain and tissue damage on device insertion and removal. Novel silicone cross-linking agents have recently been reported that produce inherently ‘self-lubricating’ silicone elastomers with very low coefficients of friction. In this study, the model antibacterial drug metronidazole has been incorporated into these self-lubricating silicone elastomers to produce a novel bioactive biomaterial. The in vitro release characteristics of the bioactive component were evaluated as a function of cross-linker composition and drug loading. Although conventional matrix-type release kinetics were observed for metronidazole from the silicone systems, it was also observed that increasing the concentration of the cross-linking agent responsible for the lubricious character (tetra(oleyloxy)silane) relative to that of the standard non-lubricious cross-linking agent (tetrapropoxysilane) produced an increase in the metronidazole flux rate by up to 65% for a specified drug loading. The results highlight the potential for developing lubricious silicone medical devices with enhanced drug release characteristics.
Resumo:
Silicone has a relatively high coefficient of friction and silicone medical devices therefore lack inherent lubricity, leading to pain on device insertion and potential tissue trauma. In this study, higher molecular weight tetra(alkoxy) silanes, particularly tetra(oleyloxy) silane, have been used as crosslinkers in the condensation cure of a hydroxy end-functionalised linear poly(dimethylsiloxane). The resulting elastomers displayed a persistent lubricous surface of oleyl alcohol, and coefficients of friction (static and dynamic) approaching zero. Chemical structures of the synthesised silanes and surface alcohol exudate were confirmed by nuclear magnetic resonance spectroscopy. Mechanical properties of the elastomers, which were chemically identical to conventionally cured systems, suggested that an 80/20 mixture of tetra(oleyloxy) silane and tetra(propoxysilane) gave the best compromise between desirable mechanical and frictional properties.
Resumo:
The purpose of this study was to mathematically characterize the effects of defined experimental parameters (probe speed and the ratio of the probe diameter to the diameter of sample container) on the textural/mechanical properties of model gel systems. In addition, this study examined the applicability of dimensional analysis for the rheological interpretation of textural data in terms of shear stress and rate of shear. Aqueous gels (pH 7) were prepared containing 15% w/w poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone) (PVP) (0, 3, 6, or 9% w/w). Texture profile analysis (TPA) was performed using a Stable Micro Systems texture analyzer (model TA-XT 2; Surrey, UK) in which an analytical probe was twice compressed into each formulation to a defined depth (15 mm) and at defined rates (1, 3, 5, 8, and 10 mm s-1), allowing a delay period (15 s) between the end of the first and beginning of the second compressions. Flow rheograms were performed using a Carri-Med CSL2-100 rheometer (TA Instruments, Surrey, UK) with parallel plate geometry under controlled shearing stresses at 20.0°?±?0.1°C. All formulations exhibited pseudoplastic flow with no thixotropy. Increasing concentrations of PVP significantly increased formulation hardness, compressibility, adhesiveness, and consistency. Increased hardness, compressibility, and consistency were ascribed to enhanced polymeric entanglements, thereby increasing the resistance to deformation. Increasing probe speed increased formulation hardness in a linear manner, because of the effects of probe speed on probe displacement and surface area. The relationship between formulation hardness and probe displacement was linear and was dependent on probe speed. Furthermore, the proportionality constant (gel strength) increased as a function of PVP concentration. The relationship between formulation hardness and diameter ratio was biphasic and was statistically defined by two linear relationships relating to diameter ratios from 0 to 0.4 and from 0.4 to 0.563. The dramatically increased hardness, associated with diameter ratios in excess of 0.4, was accredited to boundary effects, that is, the effect of the container wall on product flow. Using dimensional analysis, the hardness and probe displacement in TPA were mathematically transformed into corresponding rheological parameters, namely shearing stress and rate of shear, thereby allowing the application of the power law (??=?k?n) to textural data. Importantly, the consistencies (k) of the formulations, calculated using transformed textural data, were statistically similar to those obtained using flow rheometry. In conclusion, this study has, firstly, characterized the relationships between textural data and two key instrumental parameters in TPA and, secondly, described a method by which rheological information may be derived using this technique. This will enable a greater application of TPA for the rheological characterization of pharmaceutical gels and, in addition, will enable efficient interpretation of textural data under different experimental parameters.
Resumo:
The silicone elastomer solubilities of a range of drugs and pharmaceutical excipients employed in the development of silicone intravaginal drug delivery rings (polyethylene glycols, norethisterone acetate, estradiol, triclosan, oleyl alcohol, oxybutynin) have been determined using dynamic mechanical analysis. The method involves measuring the concentration-dependent decrease in the storage modulus associated with the melting of the incorporated drug/excipient, and extrapolation to zero change in storage modulus. The study also demonstrates the effect of drug/excipient concentrations on the mechanical stiffness of the silicone devices at 37°C.
Resumo:
The development of self-lubricating silicone elastomeric biomaterials, prepared using the novel crosslinking agent tetra( oleyloxy) silane and having very low coefficients of friction, has recently been reported. In this study, the in vitro release characteristics of lubricious oleyl alcohol produced during the silicone curing reaction have been quantitatively evaluated for a range of tetra( propoxy) silane/tetra(oleyloxy) silane crosslinker compositions using a novel evaporative light scattering detection method in combination with high performance liquid chromatography. The mechanism of oleyl alcohol release was seen to deviate from a simple, matrix-controlled diffusion process and instead obeyed an anomalous transport mechanism. An explanation for the observed release behaviour has been proposed based on competitive reaction kinetics between the tetra( oleyloxy) silane and tetra( propoxy) silane substituents of the silicone crosslinking agents.
Resumo:
The controlled-release characteristics of matrix silicone intravaginal rings loaded with between 100 and 971 mg of nonoxynol-9 have been investigated with a view to developing a ring that may offer a new female-controlled method for the prevention of transmission of sexually transmitted diseases, particularly HIV. Intravaginal rings containing 253, 487 and 971 mg of nonoxynol-9 provided a daily release of 2 mg or more over the 8-day release period, the minimal amount of nonoxynol-9 considered to provide an effective vaginal concentration for the prevention of HIV. Furthermore, the maximum daily release of N9 was about 6 mg, an amount significantly smaller than that observed for other nonoxynol-9 products whose large daily doses may in fact increase the occurrence of HIV by causing epithelial damage to the vaginal tissue. The release mechanism of the liquid nonoxynol-9 from the intravaginal rings has also been investigated and compared to models describing the release of solid drugs from the rings. It has been demonstrated through release studies and surface microscopy that a drug depletion zone is not established in such liquid-loaded intravaginal ring systems, with implications for the release kinetics. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The in vitro release characteristics of eight low-molecular-weight drugs (clindamycin, 17beta-estradiol, 17beta-estradiol-3-acetate, 17beta-estradiol diacetate, metronidazole, norethisterone, norethisterone acetate and oxybutynin) from silicone matrixtype intravaginal rings of various drug loadings have been evaluated under sink conditions. Through modelling of the release data using the Higuchi equation, and determination of the silicone solubility of the drugs, the apparent silicone elastomer diffusion coefficients of the drugs have been calculated. Furthermore, in an attempt to develop a quantitative model for predicting release rates of new drug substances from these vaginal ring devices, it has been observed that linear relationships exist between the log of the silicone solubility of the drug (mg ml(-1)) and the reciprocal of its melting point (K-1) (y = 3.558x - 9.620, R = 0.77), and also between the log of the diffusion coefficient (cm(2) s(-1)) and the molecular weight of the drug molecule (g mol(-1)) (y = - 0.0068x - 4.0738, R = 0.95). Given that the silicone solubility and silicone diffusion coefficient are the major parameters influencing the permeation of drugs through silicone elastomers, it is now possible to predict through use of the appropriate mathematical equations both matrix-type and reservoir-type intravaginal ring release rates simply from a knowledge of drug melting temperature and molecular weight. (C) 2003 Elsevier Science B.V. All rights reserved.