39 resultados para Silicate
Resumo:
Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic John T. Allen1,2, Louise Brown1,3, Richard Sanders1, C. Mark Moore1, Alexander Mustard1, Sophie Fielding1, Mike Lucas1, Michel Rixen4, Graham Savidge5, Stephanie Henson1 and Dan Mayor1 Top of pageDiatoms are unicellular or chain-forming phytoplankton that use silicon (Si) in cell wall construction. Their survival during periods of apparent nutrient exhaustion enhances carbon sequestration in frontal regions of the northern North Atlantic. These regions may therefore have a more important role in the 'biological pump' than they have previously been attributed1, but how this is achieved is unknown. Diatom growth depends on silicate availability, in addition to nitrate and phosphate2, 3, but northern Atlantic waters are richer in nitrate than silicate4. Following the spring stratification, diatoms are the first phytoplankton to bloom2, 5. Once silicate is exhausted, diatom blooms subside in a major export event6, 7. Here we show that, with nitrate still available for new production, the diatom bloom is prolonged where there is a periodic supply of new silicate: specifically, diatoms thrive by 'mining' deep-water silicate brought to the surface by an unstable ocean front. The mechanism we present here is not limited to silicate fertilization; similar mechanisms could support nitrate-, phosphate- or iron-limited frontal regions in oceans elsewhere.
Resumo:
The work described in this paper demonstrates a combined novel approach to the preparation of drug loaded poly(e-caprolactone) layered silicate nanocomposites using hot melt extrusion, a continuous process in contrast to the normal batch type processing used to prepare polymeric drug delivery systems, and most significantly the use of high surface area, large aspect ratio inorganic nanoplatelets to retard drug release. The methodology and results described in this article are significant and could equally be applied to the controlled/retarded release of any bio-active molecule (pharmaceutical, nutraceutical, protein, DNA/iRNA, anti-microbial, anti-coagulant, etc.) from biopolymers and the production of medical devices from such composite materials.
Resumo:
Self-affine dehydrated colloidal deposits on fresh mica surfaces of the synthetic layered silicate 2:1 smectite clay laponite have been studied by means of atomic force microscopy (AFM). AFM images of these prepared assemblies of sol and gel aggregates have been analyzed both by means of standard AFM Fourier software and a wavelet method. The deposited surfaces show a persistence to antipersistent crossover with a clay concentration dependent crossover length. It is concluded that the crossover length is associated with aggregate size, and further that the persistent roughness at small length scales signals near compact clusters of fractal dimension three, whereas the antipersistent roughness at large length scales signals a sedimentation process.
Ibuprofen-Loaded Poly(-caprolactone) Layered Silicate Nanocomposites Prepared by Hot Melt Extrusion
Resumo:
We present the results of BVRIZ photometry of 56 near-Earth objects (NEOs) obtained with the 1-m Jacobus Kapteyn telescope on La Palma during 2000 and 2001. Our sample includes many NEOs with particularly deep 1 - mum pyroxene/olivine absorption bands, similar to Q-type asteroids. We also classify three NEOs with particularly blue colors. No D-type asteroids were found, placing an upper limit of similar to2% on the fraction of the NEO population originating in the outer main belt or the Trojan clouds. The ratio of dark to bright objects in our sample was found to be 0.40, significantly higher than current theoretical predictions. As well as classifying the NEOs, we have investigated color trends with size and orbit. We see a general trend for larger silicate objects to have shallower absorption bands but find no significant difference in the distribution of taxonomic classes at small and large sizes. Our data clearly show that different taxonomic classes tend to occupy different regions of (a, e) space. By comparing our data with current model predictions for NEO dynamical evolution we see that Q- R-, and V-type NEOs tend to have orbits associated with "fast track" delivery from the main belt, whereas S-type NEOs tend to have orbits associated with "slow track" delivery. This outcome would be expected if space weathering occurs on time scales of >10(6) years. (C) 2003 Elsevier Science (USA). All rights reserved.