12 resultados para Silica Gel
Resumo:
An acid-functionalized ionic liquid was entrapped within a silica gel to yield a recyclable liquid phase catalyst for the dehydration of rac-1-phenyl ethanol. Hot filtration tests showed that the activity was within the gel. Comparison with an analogous SILP system revealed fundamental differences in the properties and behavior of the materials.
Resumo:
This work presents a procedure based on spatially-resolved near-infrared imaging, in order to observe temperature and composition maps in gas-solid packed beds subjected to effects of aspect ratio and non-isothermal conditions. The technique was applied to the water vapour flow in a packed bed adsorber of low aspect ratio, filled with silica gel, using a tuneable diode laser, focal planar array detector and tomographic reconstruction. The 2D projected images from parallel scanning permitted data to be retrieved from the packing and above the packing sections of 12.0×12.0×18.2mm at a volume-resolution of 0.15×0.15×0.026mm and a time-resolution of less than 3min. The technique revealed uneven temperature and composition maps in the core packed bed and in the vicinity of the wall due to flow maldistribution. In addition, the heat uptake from the packed bed and local cross-mixing were experimentally ascertained by local profiles of the water vapour composition and temperature under various aspect ratios and feed flow rates. The relative deviations in temperature and compositions were 11.1% and 9.3%, respectively. The deviation in composition, which covers the packing and above the packing sections, was slightly higher than the deviation of 8% obtained up-to-date but was limited to the exit of a packed bed adsorber. © 2011.
Resumo:
Arsenic volatilization in the environment is thought to be an important pathway for transfer from terrestrial pools to the atmosphere. However, this phenomenon is not well characterized due to inherent sampling issues in trapping, quantifying and qualifying these arsine gases; including arsine (AsH(3)), monomethyl arsine (MeAsH(2)), dimethyl arsine (Me(2)AsH) and trimethyl arsine (TMAs). To quantify and qualify arsines in air we developed a novel technique based on silver nitrate impregnated silica gel filled tubes. The method was characterized by measuring the recovery of trapped arsines after elution of this chemo-trap with hot boiling diluted nitric acid. Results from three separate experiments, measured by ICP-MS, showed that the method is reproducible and quantitative. Arsine species recovery ranged from 80.1 to 95.6%, with limit of detection as low as 3.8 ng per chemo-trap tube. Moreover, HPLC-ICP-MS analysis of hot boiling water eluted traps showed that the corresponding oxy ions of the arsines were formed with the As-C bonds of the molecule intact, hence, allowing qualification of trapped arsine species. A microcosm study examining volatile arsenic evolution from field contaminated Bangladeshi paddy soils (24.2 mg/kg arsenic) was used to show the application of silver nitrate chemo-trapping approach. Traps were placed on the inlet and the outlet of microcosms containing the soils that were either (cattle derived) manured or not, or flooded or not, in a factorial design. The headspace was purged with air at a flow rate of 12 mL/min. Results showed that as much as 320 ng of arsenic (0.014% of total soil content) could be emitted in a 3 week period for manured and flooded soils and that TMAs was the dominant species evolved, with lesser quantities of Me(2)AsH. No volatile arsenic evolution was observed for nonmanured treatments, and arsine release from the nonflooded, manured treatment was much less than the flooded treatment.
Resumo:
A new mesoporous carbon (MCSG60) was developed using an inexpensive commercial mesoporous silica gel as a template and sucrose as the carbon source. The surface area, porosity and density of the carbon were determined. The material possesses a high specific surface area and pore volume accessible for most typical aqueous pollutants. The adsorbent material was tested in a batch dye adsorption system. The behaviour of three reactive dyes adsorbed onto MCSG60 was evaluated (Naphthol Blue Black, NBB; Reactive Black 5, RB5; and Remazol Brilliant Blue R, RBBR). The maximum adsorption capacities obtained for the dyes were: 270. mg/g for NBB; 270. mg/g for RB5; and 280. mg/g for RBBR. Kinetic studies indicated that the adsorption process onto the mesoporous carbon was rapid and that equilibrium was reached in less than 1. h for all the dye systems investigated. Further batch experiments showed MCSG60 successfully adsorbed the dyes over a wide pH range and at low adsorbate concentration. The adsorption potential of MCSG60 for dye removal was further evaluated using a fixed-bed adsorption column. © 2013 Elsevier B.V.
Resumo:
Mesoporous materials were used as adsorbents for dye removal in different media: non-ionic, buffered and saline. The mesoporous materials used were commercial (silica gel) as well as as-synthesised materials (SBA-15 and a novel mesoporous carbon). Dye adsorption onto all the materials was very fast and the equilibrium was reached before 1h. The pH has a significant influence on the adsorption capacity for the siliceous materials since the electrostatic interactions are the driving forces. However, the influence of the pH on the adsorption capacity of the carbonaceous material was lower, since the van der Waals interactions are the driving forces. The ionic strength has a great impact on the siliceous materials adsorption capacity, being their adsorption capacity in a buffered medium six times higher than the corresponding to a non-ionic medium. Nevertheless, ionic strength does not influence on the dye adsorption on the mesoporous carbon. Overall, the as-synthesised carbon material presents a clear potential to treat dye effluents, showing high adsorption capacity (qe≈200mg/g) in all the pH range studied (from 3 to 11); even at low concentrations (Ce≈10mg/L) and at short contact times (te<30min).
Resumo:
Mesoporous silica grown using [3-(trimethoxysilyl)propyl]octadecyldimethylammonium chloride as the mesoporogen in the presence of Fe and Al is X-ray amorphous, but contains very small domains with features of MFI zeolite as evidenced by IR and Raman spectroscopy. When applied as a catalyst, this amorphous sample shows good performance in the selective oxidation of benzene using nitrous oxide. Addition of tetrapropylammonium as structure directing agent to the as-synthesized mesoporous silica and subsequent dry gel conversion results in the formation of hierarchical Fe/ZSM-5 zeolite. During dry gel conversion the wormhole mesostructure of the initial material is completely lost. A dominant feature of the texture after crystallization is the high interconnectivity of micropores and mesopores. Substantial redistribution of low-dispersed Fe takes place during dry gel conversion towards highly dispersed isolated Fe species outside the zeolite framework. The catalytic performance in the oxidation of benzene to phenol of these highly mesoporous zeolites is appreciably higher than that of the parent material.
Resumo:
The synthesis of [Rh-2(COD)(2)(dppm)(mu(2)-Cl)] BF4 (1) (COD) 1,5-cyclooctadiene, dppm) bis(diphenylphosphino) methane) from simple precursors is reported. This is a rare example of a dirhodium complex with an open [Rh-2(mu(2)-dppm)(mu(2)-Cl)] core. The complex has been used to affect the hydrogenation of styrene and benzo[b] thiophene with total selectivity and competitive rates of reaction. The recycling of the catalyst has been achieved by the entrapment of 1 in silica by a sol-gel method to produce a recyclable solid catalyst.
Resumo:
Heating 2,5-di-O-methanesulfonyl-1,4:3,6-dianhydro-D-sorbitol (1) in a range of solvents led to the formation of a gel state at low concentrations. 1 was found to gel aromatics, alcohols and water. The structure of 1 in the solid state was solved by single crystal X-ray crystallography; no strong hydrogen bonds or associated solvents were found in the crystal. Electron micrographs revealed the morphology of the gels to be predominantly rod-like. The ethanol alcogel was used to template silica by sol-gel transcription.
Resumo:
Molecular hydrogenation catalysts have been co-entrapped with the ionic liquid [Bmim]NTf(2) inside a silica matrix by a sot-gel method. These catalytic ionogels have been compared to simple catalyst-doped glasses, the parent homogeneous catalysts, commercial heterogeneous catalysts, and Rh-doped mesoporous silica. The most active ionogel has been characterised by transmission electron microscopy, X-ray photoelectron spectroscopy, and solid state NMR before and after catalysis. The ionogel catalysts were found to be remarkably active, recyclable and resistant to chemical change.
Resumo:
The ionic liquid (IL) 1-butyl-3-methylimidazolium chloride was used as a drying control chemical additive in the synthesis of silica sol-gel materials with and without methanol as a co-solvent. The resulting gels were characterized by using thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy and water sorption kinetics. Calcined gels were analyzed using scanning electron microscopy and nitrogen adsorption isotherms for surface area and pore volume determination. Non-calcined gels were monolithic and showed general cloudiness with lesser degrees observed at higher IL volumes. Calcinations resulted in the formation of powders with increased available surface area as the amount of IL volume was increased. This is consistent with an increase in respective pore volume but a general decrease in average pore size. The resulting materials exhibited conventional structural microdomains, in contrast to periodicity reported when other ionic liquids were used as templates.
Resumo:
Perspective and front cover article: Homogeneous catalysts entrapped in silica matrices, including ionic liquid containing 'ionogels', exhibit high selectivity, unexpected activity and excellent recyclability.