18 resultados para Sierra Engarcerán-Grabado
Resumo:
Ethical foreign policy persists as a problem of international relations, especially regarding humanitarian intervention. However, despite apparent international upheavals, the debate about the ethics of humanitarian intervention has remained fundamentally unchanged. To escape the limits of this debate, this article deconstructs British claims to ethical foreign policy since 1997, reading these claims against themselves and against contemporary humanitarian intervention literature. It finds that Britain’s ethical framework, the ‘doctrine of international community’, which justifies interventions in Kosovo, Sierra Leone and Afghanistan, is undone by the anomalous, yet exemplary, invasion of Iraq. This demonstrates the politics of ethical foreign policy: first, that any intervention, no matter how ‘ethical’ or ‘right’, produces suffering and death; and, second, that we cannot know for sure whether we are doing the right thing by intervening. Embracing, rather than effacing, the political nature of ethical foreign policy opens up a more intellectually honest and positive potential future for relating to the foreign in a responsible manner.
Resumo:
In this research note, we introduce a graded BDI agent development framework, g-BDI for short, that allows to build agents as multi-context systems that reason about three fundamental and graded mental attitudes (i.e. beliefs, desires and intentions). We propose a sound and complete logical framework for them and some logical extensions to accommodate slightly different views on desires. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Just as conventional institutions are organisational structures for coordinating the activities of multiple interacting individuals, electronic institutions provide a computational analogue for coordinating the activities of multiple interacting software agents. In this paper, we argue that open multi-agent systems can be effectively designed and implemented as electronic institutions, for which we provide a comprehensive computational model. More specifically, the paper provides an operational semantics for electronic institutions, specifying the essential data structures, the state representation and the key operations necessary to implement them. We specify the agent workflow structure that is the core component of such electronic institutions and particular instantiations of knowledge representation languages that support the institutional model. In so doing, we provide the first formal account of the electronic institution concept in a rigorous and unambiguous way.
Resumo:
In a multiagent system where norms are used to regulate the actions agents ought to execute, some agents may decide not to abide by the norms if this can benefit them. Norm enforcement mechanisms are designed to counteract these benefits and thus the motives for not abiding by the norms. In this work we propose a distributed mechanism through which agents in the multiagent system that do not abide by the norms can be ostracised by their peers. An ostracised agent cannot interact anymore and looses all benefits from future interactions. We describe a model for multiagent systems structured as networks of agents, and a behavioural model for the agents in such systems. Furthermore, we provide analytical results which show that there exists an upper bound to the number of potential norm violations when all the agents exhibit certain behaviours. We also provide experimental results showing that both stricter enforcement behaviours and larger percentage of agents exhibiting these behaviours reduce the number of norm violations, and that the network topology influences the number of norm violations. These experiments have been executed under varying scenarios with different values for the number of agents, percentage of enforcers, percentage of violators, network topology, and agent behaviours. Finally, we give examples of applications where the enforcement techniques we provide could be used.
Resumo:
Norms constitute a powerful coordination mechanism among heterogeneous agents. In this paper, we propose a rule language to specify and explicitly manage the normative positions of agents (permissions, prohibitions and obligations), with which distinct deontic notions and their relationships can be captured. Our rule-based formalism includes constraints for more expressiveness and precision and allows to supplement (and implement) electronic institutions with norms. We also show how some normative aspects are given computational interpretation. © 2008 Springer Science+Business Media, LLC.
Resumo:
We define a multi-modal version of Computation Tree Logic (ctl) by extending the language with path quantifiers E and A where d denotes one of finitely many dimensions, interpreted over Kripke structures with one total relation for each dimension. As expected, the logic is axiomatised by taking a copy of a ctl axiomatisation for each dimension. Completeness is proved by employing the completeness result for ctl to obtain a model along each dimension in turn. We also show that the logic is decidable and that its satisfiability problem is no harder than the corresponding problem for ctl. We then demonstrate how Normative Systems can be conceived as a natural interpretation of such a multi-dimensional ctl logic. © 2009 Springer Science+Business Media B.V.
Resumo:
Autonomous agents may encapsulate their principals' personal data attributes. These attributes may be disclosed to other agents during agent interactions, producing a loss of privacy. Thus, agents need self-disclosure decision-making mechanisms to autonomously decide whether disclosing personal data attributes to other agents is acceptable or not. Current self-disclosure decision-making mechanisms consider the direct benefit and the privacy loss of disclosing an attribute. However, there are many situations in which the direct benefit of disclosing an attribute is a priori unknown. This is the case in human relationships, where the disclosure of personal data attributes plays a crucial role in their development. In this paper, we present self-disclosure decision-making mechanisms based on psychological findings regarding how humans disclose personal information in the building of their relationships. We experimentally demonstrate that, in most situations, agents following these decision-making mechanisms lose less privacy than agents that do not use them. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
AgentSpeak is a logic-based programming language, based on the Belief-Desire-Intention (BDI) paradigm, suitable for building complex agent-based systems. To limit the computational complexity, agents in AgentSpeak rely on a plan library to reduce the planning problem to the much simpler problem of plan selection. However, such a plan library is often inadequate when an agent is situated in an uncertain environment. In this paper, we propose the AgentSpeak+ framework, which extends AgentSpeak with a mechanism for probabilistic planning. The beliefs of an AgentSpeak+ agent are represented using epistemic states to allow an agent to reason about its uncertain observations and the uncertain effects of its actions. Each epistemic state consists of a POMDP, used to encode the agent’s knowledge of the environment, and its associated probability distribution (or belief state). In addition, the POMDP is used to select the optimal actions for achieving a given goal, even when facing uncertainty.
Resumo:
When an agent wants to fulfill its desires about the world, the agent usually has multiple plans to choose from and these plans have different pre-conditions and additional effects in addition to achieving its goals. Therefore, for further reasoning and interaction with the world, a plan selection strategy (usually based on plan cost estimation) is mandatory for an autonomous agent. This demand becomes even more critical when uncertainty on the observation of the world is taken into account, since in this case, we consider not only the costs of different plans, but also their chances of success estimated according to the agent's beliefs. In addition, when multiple goals are considered together, different plans achieving the goals can be conflicting on their preconditions (contexts) or the required resources. Hence a plan selection strategy should be able to choose a subset of plans that fulfills the maximum number of goals while maintaining context consistency and resource-tolerance among the chosen plans. To address the above two issues, in this paper we first propose several principles that a plan selection strategy should satisfy, and then we present selection strategies that stem from the principles, depending on whether a plan cost is taken into account. In addition, we also show that our selection strategy can partially recover intention revision.
Resumo:
Revising its beliefs when receiving new information is an important ability of any intelligent system. However, in realistic settings the new input is not always certain. A compelling way of dealing with uncertain input in an agent-based setting is to treat it as unreliable input, which may strengthen or weaken the beliefs of the agent. Recent work focused on the postulates associated with this form of belief change and on finding semantical operators that satisfy these postulates. In this paper we propose a new syntactic approach for this form of belief change and show that it agrees with the semantical definition. This makes it feasible to develop complex agent systems capable of efficiently dealing with unreliable input in a semantically meaningful way. Additionally, we show that imposing restrictions on the input and the beliefs that are entailed allows us to devise a tractable approach suitable for resource-bounded agents or agents where reactiveness is of paramount importance.
Resumo:
In this paper, we present a hybrid BDI-PGM framework, in which PGMs (Probabilistic Graphical Models) are incorporated into a BDI (belief-desire-intention) architecture. This work is motivated by the need to address the scalability and noisy sensing issues in SCADA (Supervisory Control And Data Acquisition) systems. Our approach uses the incorporated PGMs to model the uncertainty reasoning and decision making processes of agents situated in a stochastic environment. In particular, we use Bayesian networks to reason about an agent’s beliefs about the environment based on its sensory observations, and select optimal plans according to the utilities of actions defined in influence diagrams. This approach takes the advantage of the scalability of the BDI architecture and the uncertainty reasoning capability of PGMs. We present a prototype of the proposed approach using a transit scenario to validate its effectiveness.