80 resultados para Side-pumped
Resumo:
The central role of FMRFamide-like peptides (FLPs) in nematode motor and sensory capabilities makes FLP signalling an appealing target for new parasiticides. Accumulating evidence has revealed an astounding level of FLP sequence conservation and diversity in the phylum Nematoda, and preliminary work has begun to identify the nematode FLP receptor complement in Caenorhabditis elegans, with a view to investigating their basic biology and therapeutic potential. However, much work is needed to clarify the functional aspects of FLP signalling and how these peptides exert their effects at the organismal level. Here, we summarize our current knowledge of nematode FLP signalling.
Resumo:
A side-fed bifilar helix antenna can be integrated with a quadrifilar helix antenna in a piggy back configuration in order to achieve a dual-mode radiating structure. The overall length of the structure is 0.44 lambda at the resonant frequency (1.54 GHz) of the space mode antenna and 0.39 lambda at the resonant frequency (1.34 GHz) of the terrestrial mode antenna. The computed results are validated by experimental data.
Resumo:
A side-fed bifilar is shown to generate a similar radiation pattern as a dipole antenna, but the structure has a significantly reduced axial length. Simulated and measured results show that the helix turn angle can be used to control the ratio of the orthogonal linear field components and the input impedance.
Resumo:
Measurements of the duration of X-ray lasing pumped with picosecond pulses from the VULCAN optical laser are obtained using a streak camera with 700 fs temporal resolution. Combined with a temporal smearing due to the spectrometer employed, we have measured X-ray laser pulse durations for Ni-like silver at 13.9 nm with a total time resolution of 1.1 ps. For Ni-like silver, the X-ray laser output has a steep rise followed by an approximately exponential temporal decay with measured full-width at half-maximum (FWHM) of 3.7 (+/-0.5) ps. For Ne-like nickel lasing at 23.1 nm, the measured duration of lasing is approximate to10.7 (+/-1) ps (FWHM). An estimate of the duration of the X-ray laser gain has been obtained by temporally resolving spectrally integrated continuum and resonance line emission. For Ni-like silver, this time of emission is approximate to22 (+/-2) ps (FWHM), while for Ne-like nickel we measure approximate to35 (+/-2) ps (FWHM). Assuming that these times of emission correspond to the gain duration, we show that a simple model consistently relates the gain durations to the measured durations of X-ray lasing. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Double laser pulses of duration similar to 75 ps and short laser pulses similar to 1 ps superimposed on longer duration background pulses have been shown to efficiently pump lasing in Ne-like and Ni-like ions. For the 75 ps pumping, X-ray laser output without travelling wave pumping is shown to be well-described by a model of ASE output. With I ps pumping, the X-ray laser output with different velocity travelling wave pumping is well-fitted with an extension to the ASE model allowing for travelling wave excitation of the gain along the plasma line. The model is used to investigate the production of short (<1 ps) x-ray laser pulses and the effects of non-ideal travelling wave velocities on the X-ray laser output. Resonance line spectra of emission perpendicular to the plasma line are measured and simulated. It is shown that an accurate opacity model for the more intense Ne-like ions is needed to correctly simulate the spectra.
Resumo:
This paper proposes a coordinated control of the rotor and grid side converters (RSC & GSC) of doubly-fed induction generator (DFIG) based wind generation systems under unbalanced voltage conditions. System behaviors and operations of the RSC and GSC under unbalanced voltage are illustrated. To provide enhanced operation, the RSC is controlled to eliminate the torque oscillations at double supply frequency under unbalanced stator supply. The oscillation of the stator output active power is then cancelled by the active power output from the GSC, to ensure constant active power output from the overall DFIG generation system. To provide the required positive and negative sequence currents control for the RSC and GSC, a current control strategy containing a main controller and an auxiliary controller is analyzed. The main controller is implemented in the positive (dq)+ frame without involving positive/negative sequence decomposition whereas the auxiliary controller is implemented in the negative sequence (dq)? frame with negative sequence current extracted. Simulation results using EMTDC/PSCAD are presented for a 2MW DFIG wind generation system to validate the proposed control scheme and to show the enhanced system operation during unbalanced voltage supply.