6 resultados para SiO(2)
Resumo:
The energetics of the low-temperature adsorption and decomposition of nitrous oxide, N(2)O, on flat and stepped platinum surfaces were calculated using density-functional theory (DFT). The results show that the preferred adsorption site for N(2)O is an atop site, bound upright via the terminal nitrogen. The molecule is only weakly chemisorbed to the platinum surface. The decomposition barriers on flat (I 11) surfaces and stepped (211) surfaces are similar. While the barrier for N(2)O dissociation is relatively small, the surface rapidly becomes poisoned by adsorbed oxygen. These findings are supported by experimental results of pulsed N(2)O decomposition with 5% Pt/SiO(2) and bismuth-modified Pt/C catalysts. At low temperature, decomposition occurs but self-poisoning by O((ads)) prevents further decomposition. At higher temperatures some desorption Of O(2) is observed, allowing continued catalytic activity. The study with bismuth-modified Pt/C catalysts showed that, although the activation barriers calculated for both terraces and steps were similar, the actual rate was different for the two surfaces. Steps were found experimentally to be more active than terraces and this is attributed to differences in the preexponential term. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Tofua Island is the largest emergent mafic volcano within the Tofua arc, Tonga, southwest Pacific. The volcano is dominated by a distinctive caldera averaging 4 km in diameter, containing a freshwater lake in the south and east. The latest paroxysmal (VEI 5-6) explosive volcanism includes two phases of activity, each emplacing a high-grade ignimbrite. The products are basaltic andesites with between 52 wt.% and 57 wt.% SiO(2). The first and largest eruption caused the inward collapse of a stratovolcano and produced the 'Tofua' ignimbrite and a sub-circular caldera located slightly northwest of the island's centre. This ignimbrite was deposited in a radial fashion over the entire island, with associated Plinian fall deposits up to 0.5 m thick on islands > 40 km away. Common sub-rounded and frequently cauliform scoria bombs throughout the ignimbrite attest to a small degree of marginal magma-water interaction. The common intense welding of the coarse-grained eruptive products, however, suggests that the majority of the erupted magma was hot, water-undersaturated and supplied at high rates with moderately low fragmentation efficiency and low levels of interaction with external water. We propose that the development of a water-saturated dacite body at shallow (<6 km) depth resulted in failure of the chamber roof to cause sudden evacuation of material, producing a Plinian eruption column. Following a brief period of quiescence, largescale faulting in the southeast of the island produced a second explosive phase believed to result from recharge of a chemically distinct magma depleted in incompatible elements. This similar, but smaller eruption, emplaced the 'Hokula' Ignimbrite sheet in the northeast of the island. A maximum total volume of 8 km(3) of juvenile material was erupted by these events. The main eruption column is estimated to have reached a height of similar to 12 km, and to have produced a major atmospheric injection of gas, and tephra recorded in the widespread series of fall deposits found on coral islands 40-80 km to the east (in the direction of regional upper-tropospheric winds). Radiocarbon dating of charcoal below the Tofua ignimbrite and organic material below the related fall units imply this eruption sequence occurred post 1,000 years BP. We estimate an eruption magnitude of 2.24x10(13) kg, sulphur release of 12 Tg and tentatively assign this eruption to the AD 1030 volcanic sulphate spike recorded in Antarctic ice sheet records.
Resumo:
In order to predict compressive strength of geopolymers prepared from alumina-silica natural products, based on the effect of Al 2 O 3 /SiO 2, Na 2 O/Al 2 O 3, Na 2 O/H 2 O, and Na/[Na+K], more than 50 pieces of data were gathered from the literature. The data was utilized to train and test a multilayer artificial neural network (ANN). Therefore a multilayer feedforward network was designed with chemical compositions of alumina silicate and alkali activators as inputs and compressive strength as output. In this study, a feedforward network with various numbers of hidden layers and neurons were tested to select the optimum network architecture. The developed three-layer neural network simulator model used the feedforward back propagation architecture, demonstrated its ability in training the given input/output patterns. The cross-validation data was used to show the validity and high prediction accuracy of the network. This leads to the optimum chemical composition and the best paste can be made from activated alumina-silica natural products using alkaline hydroxide, and alkaline silicate. The research results are in agreement with mechanism of geopolymerization.
Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0000829
Resumo:
We have looked for SiO emission as evidence of shocks in the high mass star formation region G34.26+0.15. JCMT, VLA and FCRAO observations show that SiO emission is widespread across the region. The SiO emission highlights a massive, collimated out ow and other regions where stellar winds are interacting with molecular clumps. As in other star forming regions, there is also SiO at ambient velocities which is related to the out ow activity. No strong SiO abundance enhancement was measured in either the out ow or the low velocity gas, though abundances up to 10(-8) are possible if the SiO is locally enhanced in clumps and optically thick. SiO emission is not detected from the hot core itself, indicating either that SiO is not strongly enhanced in the hot core or that column densities in the region where grain mantle evaporation has taken place are low. In line of sight spiral arm clouds, we measure a SiO abundance of 0.4-2 x 10(-10), consistent with previous estimates for quiescent clouds.
Resumo:
In liquid-phase reaction systems, the role of the solvent is often limited to the simple requirement of dissolving and/or diluting substrates. However, the correct choice, either pure or mixed, can significantly influence both reaction rate and selectivity. For multi-phase heterogeneously catalysed reactions observed variations may be due to changes in mass transfer rates, reaction mechanism, reaction kinetics, adsorption properties and combinations thereof. The liquid-phase hydrogenation of 2-butanone to 2-butanol over a Ru/SiO catalyst, for example, shows such complex rate behaviour when varying water/isopropyl alcohol (IPA) solvent ratios. In this paper, we outline a strategy which combines measured rate data with physical property measurements and molecular simulation in order to gain a more fundamental understanding of mixed solvent effects for this heterogeneously catalysed reaction. By combining these techniques, the observed complex behaviour of rate against water fraction is shown to be a combination of both mass transfer and chemical effects. © 2012 Elsevier Inc. All rights reserved.