16 resultados para Sequential Gaussian simulation
Resumo:
Objective To present a first and second trimester Down syndrome screening strategy, whereby second-trimester marker determination is contingent on the first-trimester results. Unlike non-disclosure sequential screening (the Integrated test), which requires all women to have markers in both trimesters, this allows a large proportion of the women to complete screening in the first trimester. Methods Two first-trimester risk cut-offs defined three types of results: positive and referred for early diagnosis; negative with screening complete; and intermediate, needing second-trimester markers. Multivariate Gaussian modelling with Monte Carlo simulation was used to estimate the false-positive rate for a fixed 85% detection rate. The false-positive rate was evaluated for various early detection rates and early test completion rates. Model parameters were taken from the SURUSS trial. Results Completion of screening in the first trimester for 75% of women resulted in a 30% early detection rate and a 55% second trimester detected rate (net 85%) with a false-positive rate only 0.1% above that achievable by the Integrated test. The screen-positive rate was 0.1% in the first trimester and 4.7% for those continuing to be tested in the second trimester. If the early detection rate were to be increased to 45% or the early completion rate were to be increased to 80%, there would be a further 0.1% increase in the false-positive rate. Conclusion Contingent screening can achieve results comparable with the Integrated test but with earlier completion of screening for most women. Both strategies need to be evaluated in large-scale prospective studies particularly in relation to psychological impact and practicability.
Resumo:
Objective To demonstrate the potential value of three-stage sequential screening for Down syndrome. Methods Protocols were considered in which maternal serum pregnancy associated plasma protein-A (PAPP-A) and free -human chorionic gonadotropin (hCG) measurements were taken on all women in the first trimester. Those women with very low Down syndrome risks were screened negative at that stage and nuchal translucency (NT) was measured on the remainder and the risk reassessed. Those with very low risk were then screened negative and those with very high risk were offered early diagnostic testing. Those with intermediate risks received second-trimester maternal serum -fetoprotein, free -hCG, unconjugated estriol and inhibin-A. Risk was then reassessed and those with high risk were offered diagnosis. Detection rates and false-positive rates were estimated by multivariate Gaussian modelling using Monte-Carlo simulation. Results The modelling suggests that, with full adherence to a three-stage policy, overall detection rates of nearly 90% and false-positive rates below 2.0% can be achieved. Approximately two-thirds of pregnancies are screened on the basis of first-trimester biochemistry alone, five out of six women complete their screening in the first trimester, and the first-trimester detection rate is over 60%. Conclusion Three-stage contingent sequential screening is potentially highly effective for Down syndrome screening. The acceptability of this protocol and its performance in practice, should be tested in prospective studies. Copyright © 2006 John Wiley & Sons, Ltd.
Resumo:
This paper proposes a novel image denoising technique based on the normal inverse Gaussian (NIG) density model using an extended non-negative sparse coding (NNSC) algorithm proposed by us. This algorithm can converge to feature basis vectors, which behave in the locality and orientation in spatial and frequency domain. Here, we demonstrate that the NIG density provides a very good fitness to the non-negative sparse data. In the denoising process, by exploiting a NIG-based maximum a posteriori estimator (MAP) of an image corrupted by additive Gaussian noise, the noise can be reduced successfully. This shrinkage technique, also referred to as the NNSC shrinkage technique, is self-adaptive to the statistical properties of image data. This denoising method is evaluated by values of the normalized signal to noise rate (SNR). Experimental results show that the NNSC shrinkage approach is indeed efficient and effective in denoising. Otherwise, we also compare the effectiveness of the NNSC shrinkage method with methods of standard sparse coding shrinkage, wavelet-based shrinkage and the Wiener filter. The simulation results show that our method outperforms the three kinds of denoising approaches mentioned above.
Resumo:
The monitoring of multivariate systems that exhibit non-Gaussian behavior is addressed. Existing work advocates the use of independent component analysis (ICA) to extract the underlying non-Gaussian data structure. Since some of the source signals may be Gaussian, the use of principal component analysis (PCA) is proposed to capture the Gaussian and non-Gaussian source signals. A subsequent application of ICA then allows the extraction of non-Gaussian components from the retained principal components (PCs). A further contribution is the utilization of a support vector data description to determine a confidence limit for the non-Gaussian components. Finally, a statistical test is developed for determining how many non-Gaussian components are encapsulated within the retained PCs, and associated monitoring statistics are defined. The utility of the proposed scheme is demonstrated by a simulation example, and the analysis of recorded data from an industrial melter.
Resumo:
The stochastic nature of oil price fluctuations is investigated over a twelve-year period, borrowing feedback from an existing database (USA Energy Information Administration database, available online). We evaluate the scaling exponents of the fluctuations by employing different statistical analysis methods, namely rescaled range analysis (R/S), scale windowed variance analysis (SWV) and the generalized Hurst exponent (GH) method. Relying on the scaling exponents obtained, we apply a rescaling procedure to investigate the complex characteristics of the probability density functions (PDFs) dominating oil price fluctuations. It is found that PDFs exhibit scale invariance, and in fact collapse onto a single curve when increments are measured over microscales (typically less than 30 days). The time evolution of the distributions is well fitted by a Levy-type stable distribution. The relevance of a Levy distribution is made plausible by a simple model of nonlinear transfer. Our results also exhibit a degree of multifractality as the PDFs change and converge toward to a Gaussian distribution at the macroscales.
Resumo:
In a recent experimental study, the beam intensity profile of the Vulcan petawatt laser beam was measured; it was found that only 20% of the energy was contained within the full width at half maximum of 6.9 mu m and 50% within 16 mu m, suggesting a long-tailed non-Gaussian transverse beam profile. A q-Gaussian distribution function was suggested therein to reproduce this behavior. The spatial beam profile dynamics of a q-Gaussian laser beam propagating in relativistic plasma is investigated in this article. A non-paraxial theory is employed, taking into account nonlinearity via the relativistic decrease of the plasma frequency. We have studied analytically and numerically the dynamics of a relativistically guided beam and its dependence on the q-parameter. Numerical simulation results are shown to trace the dependence of the focusing length on the q-Gaussian profile.
Resumo:
Simulation of the autoclave manufacturing technique of composites can yield a preliminary estimation of induced residual thermal stresses and deformations that affect component fatigue life, and required tolerances for assembly. In this paper, an approach is proposed to simulate the autoclave manufacturing technique for unidirectional composites. The proposed approach consists of three modules. The first module is a Thermo-chemical model to estimate the temperature and the degree of cure distributions in the composite part during the cure cycle. The second and third modules are a sequential stress analysis using FE-Implicit and FE-Explicit respectively. User-material subroutine is used to model the Viscoelastic properties of the material based on theory of micromechanics.
Resumo:
For over 50 years bridge plugs and cement have been used for well abandonment and work over and are still the material of choice. However the failures of cement abandonments using bridge plugs has been reported on many occasions, some of which have resulted in fatal consequences. A new patented product is designed to address the shortcomings associated with using bridge plugs and cement. The new developed tools use an alloy based on bismuth that is melted in situ using Thermite reaction. The tool uses the expansion properties of bismuth to seal the well. Testing the new technology in real field under more than 2 km deep sea water can be expensive. Virtual simulation of the new device under simulated thermal and mechanical environment can be achieved using nonlinear finite element method to validate the product and reduce cost. Experimental testing in the lab is performed to measure heat generated due to thermite reaction. Then, a sequential thermal mechanical explicit/implicit finite element solver is used to simulate the device under both testing lab and deep water conditions.
Resumo:
In this paper, we show how interacting and occluding targets can be tackled successfully within a Gaussian approximation. For that purpose, we develop a general expansion of the mean and covariance of the posterior and we consider a first order approximation of it. The proposed method differs from EKF in that neither a non-linear dynamical model nor a non-linear measurement vector to state relation have to be defined, so it works with any kind of interaction potential and likelihood. The approach has been tested on three sequences (10400, 2500, and 400 frames each one). The results show that our approach helps to reduce the number of failures without increasing too much the computation time with respect to methods that do not take into account target interactions.
Resumo:
The Finite Difference Time Domain (FDTD) method is becoming increasingly popular for room acoustics simulation. Yet, the literature on grid excitation methods is relatively sparse, and source functions are traditionally implemented in a hard or additive form
using arbitrarily-shaped functions which do not necessarily obey the physical laws of sound generation. In this paper we formulate
a source function based on a small pulsating sphere model. A physically plausible method to inject a source signal into the grid
is derived from first principles, resulting in a source with a near-flat spectrum that does not scatter incoming waves. In the final
discrete-time formulation, the source signal is the result of passing a Gaussian pulse through a digital filter simulating the dynamics of the pulsating sphere, hence facilitating a physically correct means to design source functions that generate a prescribed sound field.
Resumo:
Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport. © 2013 American Physical Society.
Resumo:
Cascade control is one of the routinely used control strategies in industrial processes because it can dramatically improve the performance of single-loop control, reducing both the maximum deviation and the integral error of the disturbance response. Currently, many control performance assessment methods of cascade control loops are developed based on the assumption that all the disturbances are subject to Gaussian distribution. However, in the practical condition, several disturbance sources occur in the manipulated variable or the upstream exhibits nonlinear behaviors. In this paper, a general and effective index of the performance assessment of the cascade control system subjected to the unknown disturbance distribution is proposed. Like the minimum variance control (MVC) design, the output variances of the primary and the secondary loops are decomposed into a cascade-invariant and a cascade-dependent term, but the estimated ARMA model for the cascade control loop based on the minimum entropy, instead of the minimum mean squares error, is developed for non-Gaussian disturbances. Unlike the MVC index, an innovative control performance index is given based on the information theory and the minimum entropy criterion. The index is informative and in agreement with the expected control knowledge. To elucidate wide applicability and effectiveness of the minimum entropy cascade control index, a simulation problem and a cascade control case of an oil refinery are applied. The comparison with MVC based cascade control is also included.
Resumo:
This paper proposes a continuous time Markov chain (CTMC) based sequential analytical approach for composite generation and transmission systems reliability assessment. The basic idea is to construct a CTMC model for the composite system. Based on this model, sequential analyses are performed. Various kinds of reliability indices can be obtained, including expectation, variance, frequency, duration and probability distribution. In order to reduce the dimension of the state space, traditional CTMC modeling approach is modified by merging all high order contingencies into a single state, which can be calculated by Monte Carlo simulation (MCS). Then a state mergence technique is developed to integrate all normal states to further reduce the dimension of the CTMC model. Moreover, a time discretization method is presented for the CTMC model calculation. Case studies are performed on the RBTS and a modified IEEE 300-bus test system. The results indicate that sequential reliability assessment can be performed by the proposed approach. Comparing with the traditional sequential Monte Carlo simulation method, the proposed method is more efficient, especially in small scale or very reliable power systems.