2 resultados para Sensor for sodium ion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper-manganese spinel containing anodes were synthesized by a facile sol-gel method and evaluated in lithium-ion battery applications for the first time. The synergistic effects between copper-manganese and the aqueous binder (sodium carboxymethyl cellulose) provided a high specific capacity and excellent cycling performance. It was found that the specific capacity of the copper-manganese spinel remained at 608 mAh g−1 after 100 cycles at a current density of 200 mA g−1. Furthermore, a relatively high reversible capacity of 278 mAh g−1 could be obtained at a current density of 2000 mA g−1, indicating a good rate capability. These studies suggest that copper-manganese spinel is a promising material for lithium-ion battery applications due to a combination of good electrochemical performance and low cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As we reach the physical limit of Moore’s law and silicon based electronics, alternative schemes for memory and sensor devices are being proposed on
a regular basis. The properties of ferroelectric materials on the nanoscale are key to developing device applications of this intriguing material class, and nanostructuring has been readily pursued in recent times. Focused ion beam (FIB) microscopy is one of the most signi cant techniques for achieving
this. When applied in tandem with the imaging and nanoscale manipulation afforded by proximal scanning force microscopy tools, FIB-driven nanoscale characterization has demonstrated the power and ability which simply may not be possible by other fabrication techniques in the search for innovative and novel ferroic phenomena. At the same time the process is not without pitfalls; it is time-consuming and success is not always guaranteed thus often being the bane in progress. This balanced review explores a brief history of the relationship between the FIB and ferroelectrics, the fascinating properties it has unveiled, the challenges associated with FIB that have led to alterna- tive nanostructuring techniques and nally new ideas that should be explored using this exciting technique.