40 resultados para Sensor Data Fusion Applicazioni


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unmanned surface vehicles (USVs) are able to accomplish difficult and challenging tasks both in civilian and defence sectors without endangering human lives. Their ability to work round the clock makes them well-suited for matters that demand immediate attention. These issues include but not limited to mines countermeasures, measuring the extent of an oil spill and locating the source of a chemical discharge. A number of USV programmes have emerged in the last decade for a variety of aforementioned purposes. Springer USV is one such research project highlighted in this paper. The intention herein is to report results emanating from data acquired from experiments on the Springer vessel whilst testing its advanced navigation, guidance and control (NGC) subsystems. The algorithms developed for these systems are based on soft-computing methodologies. A novel form of data fusion navigation algorithm has been developed and integrated with a modified optimal controller. Experimental results are presented and analysed for various scenarios including single and multiple waypoints tracking and fixed and time-varying reference bearings. It is demonstrated that the proposed NGC system provides promising results despite the presence of modelling uncertainty and external disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maintaining the ecosystem is one of the main concerns in this modern age. With the fear of ever-increasing global warming, the UK is one of the key players to participate actively in taking measures to slow down at least its phenomenal rate. As an ingredient to this process, the Springer vehicle was designed and developed for environmental monitoring and pollutant tracking. This special issue paper highlighted the Springer hardware and software architecture including various navigational sensors, a speed controller, and an environmental monitoring unit. In addition, details regarding the modelling of the vessel were outlined based mainly on experimental data. The formulation of a fault tolerant multi-sensor data fusion technique was also presented. Moreover, control strategy based on a linear quadratic Gaussian controller was developed and simulated on the Springer model.
Gaussian controller is developed and simulated on the Springer model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor node platforms are very diversified and very constrained, particularly in power consumption. When choosing or sizing a platform for a given application, it is necessary to be able to evaluate in an early design stage the impact of those choices. Applied to the computing platform implemented on the sensor node, it requires a good understanding of the workload it must perform. Nevertheless, this workload is highly application-dependent. It depends on the data sampling frequency together with application-specific data processing and management. It is thus necessary to have a model that can represent the workload of applications with various needs and characteristics. In this paper, we propose a workload model for wireless sensor node computing platforms. This model is based on a synthetic application that models the different computational tasks that the computing platform will perform to process sensor data. It allows to model the workload of various different applications by tuning data sampling rate and processing. A case study is performed by modeling different applications and by showing how it can be used for workload characterization. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a framework for a telecommunications interface which allows data from sensors embedded in Smart Grid applications to reliably archive data in an appropriate time-series database. The challenge in doing so is two-fold, firstly the various formats in which sensor data is represented, secondly the problems of telecoms reliability. A prototype of the authors' framework is detailed which showcases the main features of the framework in a case study featuring Phasor Measurement Units (PMU) as the application. Useful analysis of PMU data is achieved whenever data from multiple locations can be compared on a common time axis. The prototype developed highlights its reliability, extensibility and adoptability; features which are largely deferred from industry standards for data representation to proprietary database solutions. The open source framework presented provides link reliability for any type of Smart Grid sensor and is interoperable with existing proprietary database systems, and open database systems. The features of the authors' framework allow for researchers and developers to focus on the core of their real-time or historical analysis applications, rather than having to spend time interfacing with complex protocols.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the use of the Euler equations for the generation and testing of tabular aerodynamic models for flight dynamics analysis. Maneuvers for the AGARD Standard Dynamics Model sharp leading-edge wind-tunnel geometry are considered as a test case. Wind-tunnel data is first used to validate the prediction of static and dynamic coefficients at both low and high angles, featuring complex vortical flow, with good agreement obtained at low to moderate angles of attack. Then the generation of aerodynamic tables is described based on a data fusion approach. Time-optimal maneuvers are generated based on these tables, including level flight trim, pull-ups at constant and varying incidence, and level and 90 degrees turns. The maneuver definition includes the aircraft states and also the control deflections to achieve the motion. The main point of the paper is then to assess the validity of the aerodynamic tables which were used to define the maneuvers. This is done by replaying them, including the control surface motions, through the time accurate computational fluid dynamics code. The resulting forces and moments are compared with the tabular values to assess the presence of inadequately modeled dynamic or unsteady effects. The agreement between the tables and the replay is demonstrated for slow maneuvers. Increasing rate maneuvers show discrepancies which are ascribed to vortical flow hysteresis at the higher rate motions. The framework is suitable for application to more complex viscous flow models, and is powerful for the assessment of the validity of aerodynamics models of the type currently used for studies of flight dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a novel approach to person verification by fusing face and lip features. Specifically, the face is modeled by the discriminative common vector and the discrete wavelet transform. Our lip features are simple geometric features based on a lip contour, which can be interpreted as multiple spatial widths and heights from a center of mass. In order to combine these features, we consider two simple fusion strategies: data fusion before training and score fusion after training, working with two different face databases. Fusing them together boosts the performance to achieve an equal error rate as low as 0.4% and 0.28%, respectively, confirming that our approach of fusing lips and face is effective and promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kyoto Protocol and the European Energy Performance of Buildings Directive put an onus on governments
and organisations to lower carbon footprint in order to contribute towards reducing global warming. A key
parameter to be considered in buildings towards energy and cost savings is its indoor lighting that has a major
impact on overall energy usage and Carbon Dioxide emissions. Lighting control in buildings using Passive
Infrared sensors is a reliable and well established approach; however, the use of only Passive Infrared does not
offer much savings towards reducing carbon, energy, and cost. Accurate occupancy monitoring information can
greatly affect a building’s lighting control strategy towards a greener usage. This paper presents an approach for
data fusion of Passive Infrared sensors and passive Radio Frequency Identification (RFID) based occupancy
monitoring. The idea is to have efficient, need-based, and reliable control of lighting towards a green indoor
environment, all while considering visual comfort of occupants. The proposed approach provides an estimated
13% electrical energy savings in one open-plan office of a University building in one working day. Practical
implementation of RFID gateways provide real-world occupancy profiling data to be fused with Passive
Infrared sensing towards analysis and improvement of building lighting usage and control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual metrology (VM) aims to predict metrology values using sensor data from production equipment and physical metrology values of preceding samples. VM is a promising technology for the semiconductor manufacturing industry as it can reduce the frequency of in-line metrology operations and provide supportive information for other operations such as fault detection, predictive maintenance and run-to-run control. The prediction models for VM can be from a large variety of linear and nonlinear regression methods and the selection of a proper regression method for a specific VM problem is not straightforward, especially when the candidate predictor set is of high dimension, correlated and noisy. Using process data from a benchmark semiconductor manufacturing process, this paper evaluates the performance of four typical regression methods for VM: multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), neural networks (NN) and Gaussian process regression (GPR). It is observed that GPR performs the best among the four methods and that, remarkably, the performance of linear regression approaches that of GPR as the subset of selected input variables is increased. The observed competitiveness of high-dimensional linear regression models, which does not hold true in general, is explained in the context of extreme learning machines and functional link neural networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual metrology (VM) aims to predict metrology values using sensor data from production equipment and physical metrology values of preceding samples. VM is a promising technology for the semiconductor manufacturing industry as it can reduce the frequency of in-line metrology operations and provide supportive information for other operations such as fault detection, predictive maintenance and run-to-run control. Methods with minimal user intervention are required to perform VM in a real-time industrial process. In this paper we propose extreme learning machines (ELM) as a competitive alternative to popular methods like lasso and ridge regression for developing VM models. In addition, we propose a new way to choose the hidden layer weights of ELMs that leads to an improvement in its prediction performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals behave. Interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information.

DESCRIPTION: This work presents Framework4, an all-encompassing software suite which operates on smart sensor data to determine the 4 key elements considered pivotal for movement analysis from such tags (Endangered Species Res 4: 123-37, 2008). These are; animal trajectory, behaviour, energy expenditure and quantification of the environment in which the animal moves. The program transforms smart sensor data into dead-reckoned movements, template-matched behaviours, dynamic body acceleration-derived energetics and position-linked environmental data before outputting it all into a single file. Biologists are thus left with a single data set where animal actions and environmental conditions can be linked across time and space.

CONCLUSIONS: Framework4 is a user-friendly software that assists biologists in elucidating 4 key aspects of wild animal ecology using data derived from tags with multiple sensors recording at high rates. Its use should enhance the ability of biologists to derive meaningful data rapidly from complex data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poor sleep is increasingly being recognised as an important prognostic parameter of health. For those with suspected sleep disorders, patients are referred to sleep clinics which guide treatment. However, sleep clinics are not always a viable option due to their high cost, a lack of experienced practitioners, lengthy waiting lists and an unrepresentative sleeping environment. A home-based non-contact sleep/wake monitoring system may be used as a guide for treatment potentially stratifying patients by clinical need or highlighting longitudinal changes in sleep and nocturnal patterns. This paper presents the evaluation of an under-mattress sleep monitoring system for non-contact sleep/wake discrimination. A large dataset of sensor data with concomitant sleep/wake state was collected from both younger and older adults participating in a circadian sleep study. A thorough training/testing/validation procedure was configured and optimised feature extraction and sleep/wake discrimination algorithms evaluated both within and across the two cohorts. An accuracy, sensitivity and specificity of 74.3%, 95.5%, and 53.2% is reported over all subjects using an external validation
dataset (71.9%, 87.9% and 56%, and 77.5%, 98% and 57% is reported for younger and older subjects respectively). These results compare favourably with similar research, however this system provides an ambient alternative suitable for long term continuous sleep monitoring, particularly amongst vulnerable populations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In many CCTV and sensor network based intelligent surveillance systems, a number of attributes or criteria are used to individually evaluate the degree of potential threat of a suspect. The outcomes for these attributes are in general from analytical algorithms where data are often pervaded with uncertainty and incompleteness. As a result, such individual threat evaluations are often inconsistent, and individual evaluations can change as time elapses. Therefore, integrating heterogeneous threat evaluations with temporal influence to obtain a better overall evaluation is a challenging issue. So far, this issue has rarely be considered by existing event reasoning frameworks under uncertainty in sensor network based surveillance. In this paper, we first propose a weighted aggregation operator based on a set of principles that constraints the fusion of individual threat evaluations. Then, we propose a method to integrate the temporal influence on threat evaluation changes. Finally, we demonstrate the usefulness of our system with a decision support event modeling framework using an airport security surveillance scenario.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a data model for content representation of temporal media in an IP based sensor network. The model is formed by introducing the idea of semantic-role from linguistics into the underlying concepts of formal event representation with the aim of developing a common event model. The architecture of a prototype system for a multi camera surveillance system, based on the proposed model is described. The important aspects of the proposed model are its expressiveness, its ability to model content of temporal media, and its suitability for use with a natural language interface. It also provides a platform for temporal information fusion, as well as organizing sensor annotations by help of ontologies.