7 resultados para Semantic interference


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an analytical performance investigation of both beamforming (BF) and interference cancellation (IC) strategies for a device-to-device (D2D) communication system underlaying a cellular network with an M-antenna base station (BS). We first derive new closed-form expressions for the ergodic achievable rate for BF and IC precoding strategies with quantized channel state information (CSI), as well as, perfect CSI. Then, novel lower and upper bounds are derived which apply for an arbitrary number of antennas and are shown to be sufficiently tight to the Monte-Carlo results. Based on these results, we examine in detail three important special cases including: high signal-to-noise ratio (SNR), weak interference between cellular link and D2D link, and BS equipped with a large number of antennas. We also derive asymptotic expressions for the ergodic achievable rate for these scenarios. Based on these results, we obtain valuable insights into the impact of the system parameters, such as the number of antennas, SNR and the interference for each link. In particular, we show that an irreducible saturation point exists in the high SNR regime, while the ergodic rate under IC strategy is verified to be always better than that under BF strategy. We also reveal that the ergodic achievable rate under perfect CSI scales as log2M, whilst it reaches a ceiling with quantized CSI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate device-to-device (D2D) communication underlaying cellular networks with M-antenna base stations. We consider both beamforming (BF) and interference cancellation (IC) strategies under quantized channel state information (CSI), as well as, perfect CSI. We derive tight closed-form approximations of the ergodic achievable rate which hold for arbitrary transmit power, location of users and number of antennas. Based on these approximations, we derive insightful asymptotic expressions for three special cases namely high signal-to-noise (SNR), weak interference, and large M. In particular, we show that in the high SNR regime a ceiling effect exists which depends on the received signal-to-interference ratio and the number of antennas. Moreover, the achievable rate scales logarithmically with M. The ergodic achievable rate is shown to scale logarithmically with SNR and the antenna number in the weak interference case. When the BS is equipped with large number of antennas, we find that the ergodic achievable rate under quantized CSI reaches a saturated value, whilst it scales as log2M under perfect CSI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the impact of co-channel interference on the security performance of multiple amplify-and-forward (AF) relaying networks, where N intermediate AF relays assist the data transmission from the source to the destination. The relays are corrupted by multiple co-channel interferers, and the information transmitted from the relays to destination can be overheard by the eavesdropper. In order to deal with the interference and wiretap, the best out of N relays is selected for security enhancement. To this end, we derive a novel lower bound on the secrecy outage probability (SOP), which is then utilized to present two best relay selection criteria, based on the instantaneous and statistical channel information of the interfering links. For these criteria and the conventional maxmin criterion, we quantify the impact of co-channel interference and relay selection by deriving the lower bound on the SOP. Furthermore, we derive the asymptotic SOP for each criterion, to explicitly reveal the impact of transmit power allocation among interferers on the secrecy performance, which offers valuable insights into practical design. We demonstrate that all selection criteria achieve full secrecy diversity order N, while the proposed in this paper two criteria outperform the conventional max-min scheme. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a linear precoder design for an underlay cognitive radio multiple-input multiple-output broadcast channel, where the secondary system consisting of a secondary base-station (BS) and a group of secondary users (SUs) is allowed to share the same spectrum with the primary system. All the transceivers are equipped with multiple antennas, each of which has its own maximum power constraint. Assuming zero-forcing method to eliminate the multiuser interference, we study the sum rate maximization problem for the secondary system subject to both per-antenna power constraints at the secondary BS and the interference power constraints at the primary users. The problem of interest differs from the ones studied previously that often assumed a sum power constraint and/or single antenna employed at either both the primary and secondary receivers or the primary receivers. To develop an efficient numerical algorithm, we first invoke the rank relaxation method to transform the considered problem into a convex-concave problem based on a downlink-uplink result. We then propose a barrier interior-point method to solve the resulting saddle point problem. In particular, in each iteration of the proposed method we find the Newton step by solving a system of discrete-time Sylvester equations, which help reduce the complexity significantly, compared to the conventional method. Simulation results are provided to demonstrate fast convergence and effectiveness of the proposed algorithm.