190 resultados para Self-consolidating concrete (SCC) , compressive membrane action, basalt fibre reinforced polymer
Resumo:
With ever increasing demands to strengthen existing reinforced concrete structures to facilitate higher loading due to change of use and to extend service lifetime, the use of fibre reinforced polymers (FRPs) in structural retrofitting offers an opportunity to achieve these aims. To date, most research in this area has focussed on the use of glass fibre reinforced polymer (GFRP) and carbon fibre reinforced polymer (CFRP), with relatively little on the use of basalt fibre reinforced polymer (BFRP) as a suitable strengthening material. In addition, most previous research has been carried out using simply supported elements, which have not considered the beneficial influence of in-plane lateral restraint, as experienced within a framed building structure. Furthermore, by installing FRPs using the near surface mounted (NSM) technique, disturbance to the existing structure can be minimised.
This paper outlines BFRP NSM strengthening of one third scale laterally restrained floor slabs which reflect the inherent insitu compressive membrane action (CMA) in such slabs. The span-to-depth ratios of the test slabs were 20 and 15 and all were constructed with normal strength concrete (~40N/mm2) and 0.15% steel reinforcement. 0.10% BFRP was used in the retrofitted samples, which were compared with unretrofitted control samples. In addition, the bond strength of BFRP bars bonded into concrete was investigated over a range of bond lengths with two different adhesive thicknesses. This involved using an articulated beam arrangement in order to establish optimum bond characteristics for use in strengthening slab samples.
Resumo:
The behaviour of Basalt Fibre Reinforced Polymer (BFRP) loaded perpendicular to glulam timber elements was investigated. It was found that pull-out load increased approximately linearly with the bonded length up to maximum which occurred at a bonded length of 250 mm (~15 times the hole diameter) and did not increase beyond this bonded length. Failure mode of the samples was mostly shear fracture which was located at the cylindrical zone at the timber/adhesive interface. Increased bonded lengths resulted in corresponding decrease in interfacial bond stress. At 250 mm bonded length, the pull-out capacity of the proposed design model was about 2% lower than that of the tests. The results also showed that the bond stress of the theoretical model (at the ascending and descending branches) of the stress–slip curve was approximately 5–10% of that of the experiment.
Resumo:
Improvements in the structural performance of glulam timber beams by the inclusion of reinforcing materials can improve both the service performance and ultimate capacity. In recent years research focusing on the addition of fibre reinforced polymers to strengthen members has yielded positive results. However, the FRP material is still a relatively expensive material and its full potential has not been realised in combination with structural timber. This paper describes a series of four-point bending tests that were conducted, under service and ultimate loads, on post-tensioned glulam timber beams where the reinforcing tendon used was 12 mm diameter Basalt Fibre Reinforced Polymer (BFRP). The research was designed to evaluate the additional benefits of including an active type of reinforcement, by post-tensioning the BFRP tendon, as opposed to the passive approach of simply reinforcing the timber beam.
From the laboratory investigations, it was established that there was a 16% increase in load carrying capacity, in addition to a 14% reduction in deflection under service loads when members containing the post-tensioned BFRP composite are compared with control timber specimens. Additionally a more favourable ductile failure mode was witnessed compared to the brittle failure of an unreinforced timber beam. The results support the assumption that by initially stressing the embedded FRP tendon the structural benefits experienced by the timber member increase in a number of ways, indicating that there is significant scope for this approach in practical applications.
Prediction of Fresh and Hardened Properties of Self-Consolidating Concrete Using Neurofuzzy Approach
Resumo:
Self-consolidating concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work conditions and also reduce the impact on the environment by elimination of the need for compaction. This investigation aimed at exploring the potential use of the neurofuzzy (NF) approach to model the fresh and hardened properties of SCC containing pulverised fuel ash (PFA) as based on experimental data investigated in this paper. Twenty six mixes were made with water-to-binder ratio ranging from 0.38 to 0.72, cement content ranging from 183 to 317 kg/m3 , dosage of PFA ranging from 29 to 261 kg/m3 , and percentage of superplasticizer, by mass of powder, ranging from 0 to 1%. Nine properties of SCC mixes modeled by NF were the slump flow, JRing combined to the Orimet, JRing combined to cone, V-funnel, L-box blocking ratio, segregation ratio, and the compressive strength at 7, 28, and 90 days. These properties characterized the filling ability, the passing ability, the segregation resistance of fresh SCC, and the compressive strength. NF model is constructed by training and testing data using the experimental results obtained in this study. The results of NF models were compared with experimental results and were found to be quite accurate. The proposed NF models offers useful modeling approach of the fresh and hardened properties of SCC containing PFA.
Resumo:
Arching or compressive membrane action (CMA) in reinforced concrete slabs occurs as a result of the great difference between the tensile and compressive strength of concrete. Cracking of the concrete causes a migration of the neutral axis which is accompanied by in-plane expansion of the slab at its boundaries. If this natural tendency to expand is restrained, the development of arching action enhances the strength of the slab. The term arching action is normally used to describe the arching phenomenon in one-way spanning slabs and compressive membrane action is normally used to describe the arching phenomenon in two-
way spanning slabs. This encyclopedic article presents the background to the discovery of the phenomenon of arching action and presents a factual history of the approaches to the treatment of arching action in the United Kingdom and North American bridge deck design codes. The article summarises the theoretical methodology used in the United Kingdom Design Manual for Roads and Bridges, BD81/02, which was based on the work by Kirkpatrick, Rankin & Long at Queen's University Belfast.
Resumo:
This paper reviews statistical models obtained from a composite factorial design study, which was carried out to determine the influence of three key parameters of mixture composition on filling ability and passing ability of self-consolidating concrete (SCC). This study was a part of the European project “Testing SCC”- GRD2-2000-30024. The parameters considered in this study were the dosages of water and high-range water-reducing admixture (HRWRA), and the volume of coarse aggregates. The responses of the derived statistical models were slump flow, T50 , T60, V-funnel flow time, Orimet flow time, and blocking ratio (L-box). The retention of these tests was also measured at 30 and 60 minutes after adding the first water. The models are valid for mixtures made with 188 to 208 L/m3 (317 to 350 lb/yd3) of water, 3.8 to 5.8 kg/m3 (570 to 970 mL/100 kg of binder) of HRWRA, and 220 to 360 L/m3 (5.97 to 9.76 ft3/yd3) of coarse aggregates. The utility of such models to optimize concrete mixtures and to achieve a good balance between filling ability and passing ability is discussed. Examples highlighting the usefulness of the models are presented using isoresponse surfaces to demonstrate single and coupled effects of mixture parameters on slump flow, T50 , T60 , V-funnel flow time, Orimet flow time, and blocking ratio. The paper also illustrates the various trade-offs between the mixture parameters on the derived responses that affected the filling and the passing ability.
Resumo:
The permeability of concrete is influenced by the porosity and the interconnectivity of the pores in the cement paste and the microcracks in concrete, especially in the interface of paste-aggregate. The movements of gases, liquids, and ions through concrete is important because of their interactions with concrete constituents, including pore water, which can alter the integrity of concrete directly and indirectly, leading to the deterioration of structures. This study reports the findings from an investigation carried out to study the effect of the mixture variations on the durability of medium- and high-strength self-consolidating concrete (SCC). The mixture variations studied include the type of mineral admixtures, such as limestone powder (LSP) and pulverized fuel ash (PFA), and viscositymodifying admixtures (VMA) for both medium- and high-strength SCC. Air permeability, water permeability, capillary absorption, and chloride diffusivity were used to assess the durability of SCC mixtures in comparison with normal, vibrated concretes. The results showed that SCC mixtures, for medium- and high-strength grades using PFA followed by LSP, have lower permeability properties compared with normal concretes. SCC made with VMA had a higher sorptivity, air permeability, and water permeability compared with other SCC mixtures, which can be attributed to higher watercement ratio (w/c) and lack of pore filling effect. An in-place migration coefficient was obtained using the in-place ion migration test. This was used to compare the potential diffusivity of different concretes. The results indicated that SCC, for both grades of strength, made with PFA showed much lower diffusivity values in comparison with other mixtures, whereas the SCC mixtures with VMA showed higher diffusivity.