55 resultados para Seed predation
Resumo:
Components of partial disease resistance (PDR) to fusarium head blight (FHB), detected in a seed-germination assay, were compared with whole-plant FHB resistance of 30 USA soft red winter wheat entries in the 2002 Uniform Southern FHB Nursery. Highly significant (P <0·001) differences between cultivars in the in vitro seed-germination assay inoculated with Microdochium majus were correlated to FHB disease incidence (r = -0·41; P <0·05), severity (r = -0·47; P <0·01), FHB index (r = -0·46; P <0·01), damaged kernels (r = -0·52; P <0·01), grain deoxynivalenol (DON) concentration (r = -0·40; P <0·05) and incidence/severity/kernel-damage index (ISK) (r = -0·45; P <0·01) caused by Fusarium graminearum. Multiple linear regression analysis explained a greater percentage of variation in FHB resistance using the seed-germination assay and the previously reported detached-leaf assay PDR components as explanatory factors. Shorter incubation periods, longer latent periods, shorter lesion lengths in the detached-leaf assay and higher germination rates in the seed-germination assay were related to greater FHB resistance across all disease variables, collectively explaining 62% of variation for incidence, 49% for severity, 56% for F. graminearum-damaged kernels (FDK), 39% for DON and 59% for ISK index. Incubation period was most strongly related to disease incidence and the early stages of infection, while resistance detected in the seed germination assay and latent period were more strongly related to FHB disease severity. Resistance detected using the seed-germination assay was notable as it related to greater decline in the level of FDK and a smaller reduction in DON than would have been expected from the reduction in FHB disease assessed by visual symptoms.
Resumo:
Parasites can structure biological communities directly through population regulation and indirectly by processes such as apparent competition. However, the role of parasites in the process of biological invasion is less well understood and mechanisms of parasite mediation of predation among hosts are unclear. Mutual predation between native and invading species is an important factor in determining the outcome of invasions in freshwater amphipod communities. Here, we show that parasites mediate mutual intraguild predation among native and invading species and may thereby facilitate the invasion process. We find that the native amphipod Gammarus duebeni celticus is host to a microsporidian parasite, Pleistophora sp. (new species), with a frequency of infection of 0-90%. However, the parasite does not infect three invading species, G. tigrinus, G. pulex and Crangonyx pseudogracilis. In field and laboratory manipulations, we show that the parasite exhibits cryptic virulence: the parasite does not affect host fitness in single-species populations, but virulence becomes apparent when the native and invading species interact. That is, infection has no direct effect on G. d. celticus survivorship, size or fecundity; however, in mixed-species experiments, parasitized natives show a reduced capacity to prey on the smaller invading species and are more likely to be preyed upon by the largest invading species. Thus, by altering dominance relationships and hierarchies of mutual predation, parasitism strongly influences, and has the potential to change, the outcome of biological invasions.
Resumo:
With field, laboratory, and modeling approaches, we examined the interplay among habitat structure, intraguild predation (IGP), and parasitism in an ongoing species invasion. Native Gammarus duebeni celticus (Crustacea: Amphipoda) are often, but not always, replaced by the invader Gammarus pulex through differential IGP. The muscle-wasting microsporidian parasite Pleistophora mulleri infects the native but not the invader. We found a highly variable prevalence of P. mulleri in uninvaded rivers, with 0–91% of hosts parasitized per sample. In addition, unparasitized natives dominated fast-flowing riffle patches of river, whereas parasitized individuals dominated slower- flowing, pooled patches. We examined the survivorship of invader and native in single and mixed-species microcosms with high, intermediate, and zero parasite prevalence. G. pulex survivorship was high in all treatments, whereas G. duebeni subsp. celticus survivorship was significantly lower in the presence of the invader. Further, parasitized G. duebeni subsp. celticus experienced near-total elimination. Models of the species replacement process implied that parasite-enhanced IGP would make invasion by G. pulex more likely, regardless of habitat and parasite spatial structure. However, where heterogeneity in parasite prevalence creates a landscape of patches with different susceptibilities to invasion, G. pulex may succeed in cases where invasion would not be possible if patches were equivalent. The different responses of parasitized and unparasitized G. duebeni subsp. celticus to environmental heterogeneity potentially link landscape patterns to the success or failure of the invasion process.
Resumo:
1. In a series of laboratory experiments, we assessed the predatory nature of the native Irish amphipod, Gammarus duebeni celticus, and the introduced G. pulex, towards the mayfly nymph Baetis rhodani. We also investigated alterations in microhabitat use and drift behaviour of B. rhodani in the presence of Gammarus, and indirect predatory interactions with juvenile Atlantic salmon, Salmo salar. 2. In trials with single predators and prey, B. rhodani survival was significantly lower when Gammarus were free to interact with nymphs as than when Gammarus were isolated from them. The invader G. pulex reduced the survival of B. rhodani more rapidly than did the native G. d. celticus. Both Gammarus spp. were active predators. 3. In `patch' experiments, B. rhodani survival was significantly lower both when G. pulex and G. d. celticus were present, although the effect of the two Gammarus species did not differ. Again, active predation of nymphs by Gammarus was observed. Significantly more nymphs occurred on the top and sides of a tile, and per capita drifts were significantly higher, when Gammarus were present. Baetis rhodani per capita drift was also significantly higher in the presence of the introduced G. pulex than with the native G. d. celticus. 4. Gammarus facilitated predation by salmon parr of B. rhodani by significantly increasing fish–nymph encounters on exposed gravel and in the drift. There were no differential effects of the two Gammarus spp. on fish –B. rhodani encounters or consumption. 5. We conclude that Gammarus as a predator can have lethal, nonlethal, direct and indirect effects in freshwaters. We stress the need for recognition of this predatory role when assigning Gammarus spp. to a `Functional Feeding Group'.
Resumo:
Invasive species and environmental change often occur simultaneously across a habitat and therefore our understanding of their relative roles in the decline of native species is often poor. Here, the environmental mediation of a critical interspecific interaction, intraguild predation (IGP), was examined between invasive (Gammarus pulex) and native (G. d. celticus) freshwater amphipods. In the laboratory, IGP asymmetries (males preying on congeneric females) were examined in river water sourced from zones where: (1) the invader has completely displaced the native; (2) the two species currently co-exist, and (3) the native currently persists uninvaded. The invader was always a more effective IG predator, but this asymmetry was significantly weaker moving from 'invader-only water' through 'co-existence water' to 'native-only water'. The constituent of the water that drives this mediation of IGP was not identified. However, balancing the rigour of laboratory experiments with field derived 'environment' has advanced understanding of known patterns in a native species decline, and its co-existence and persistence in the face of an invader.
Resumo:
We examined the trade-off between the behaviours associated with predator avoidance and mate acquisition in the mate-guarding amphipod crustacean Gammarus duebeni. We used laboratory experiments to investigate the impact of olfactory predator cues on activity, mate choice and mate-guarding behaviour of males and females. Pair formation declined under perceived risk of predation, reflecting reduced activity of both males and females and hence a reduced likelihood of encountering a mate. We also observed a reduction in the choosiness of both males and females. Under increased perceived predation risk, assessment of the female by the male was more likely to be followed by pair formation, and males showed a nonsignificant trend towards reduced discrimination in favour of large females and were less tenacious in their pair bond when they paired during exposure to predator cues. Females also showed less resistance behaviour, suggesting that both males and females trade off the costs of maximizing current reproductive success against the benefits of predator avoidance for survival and reproduction in the future. We discuss the implications of such context-dependent mating behaviours for ecological interactions between species and suggest that predators, via the effects of perceived predation risk on mate choice and mate guarding in the prey species, induce trait-mediated indirect effects with the potential to influence population dynamics and community structure. (C) 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Intraguild predation (IGP) is common in communities, yet theory suggests it should not often persist and coexistence of participating species should be rare. As parasitism can play keystone roles in interactions between competitors, and between predators and prey, here we examine the role of parasites in maintaining IGP. We used numerical exploration of population dynamic equations to determine coexistence and exclusion zones for two species engaged in IGP with shared parasitism. We demonstrate that parasitism increases the range of conditions leading to coexistence when the parasite exerts a greater deleterious effect on the 'stronger' species in terms of the combined effects of competition and predation. Such a parasite can enable an inferior competitor that is also the less predatory to persist, and may actually lead to numerical dominance of this species.
Resumo:
We assessed the extent to which an invader, Gammarus pulex (Crustacea: Amphipoda), has replaced a native, Gammarus duebeni celticus, over a 13-year period in a European river system and some of the abiotic and biotic factors that could account for this. Between 1988 and 2001, 56% of mixed-species sites had become invader-only sites, whereas no mixed sites had become native only again. The native dominated areas of higher dissolved oxygen and water quality, with the reciprocal true for the invader. Field transplant experiments revealed that native survivorship was lower in areas where it had been replaced than in areas where the invader does not yet occur. In invader-only areas, native survivorship was lower than that of the invader when kept separately and lowest when both species were kept together. We also observed predation of the native by the invader. Laboratory oxygen manipulation experiments revealed that at 30% saturation, the native's survivorship was two thirds that of the invader. We conclude that decreasing water quality favours replacement of the native by the invader.
Resumo:
We used field surveys and transplant experiments to elucidate the relative roles of physico-chemical regime and intraguild predation in determining the generally mutually exclusive distributions of native and invader freshwater amphipod species. Field surveys showed that the native Gammarus duebeni celticus dominates the shoreline of Lough Neagh, N. Ireland, with some co-occurrence with the N. American invader G. tigrinus. However, the latter species dominates the deeper areas of the mid-Lough. Transplant experiments showed no difference in survival of the native and invader in single species 'bioassay tubes' placed along the shoreline. However, there was significantly higher survival of the invader compared with the native in single species tubes placed in the mid-Lough. In mixed species tubes on the shoreline, the native killed and ate the invader, with no reciprocal interaction, leading to significant reductions of the invader. However, the invader had significantly higher survival than the native in mixed species tubes in the mid-Lough, with no evidence. of predation between the two species. These results indicate that, whereas differential intraguild predation may determine domination of the shoreline by the native, differential physico-chemical tolerances may be major determinants of the domination of the mid-Lough by the invader. This study emphasises the need to consider the habitat template in conjunction with biotic interactions before attempting to draw conclusions about mechanisms determining relative distribution patterns of native and invasive species.
Resumo:
1. The balance of predation between closely related invasive and native species can be an important determinant of the success or failure of biological invasions. In Irish freshwaters, the introduced amphipod Gammarus pulex has replaced the native G. duebeni celticus, possibly through differential mutual intraguild predation (IGP). Theoretically, parasitism could mediate such predation and hence the invasion outcome. However, this idea remains poorly studied.
Resumo:
In a laboratory experiment that permitted both observations of the behaviour of individuals and the monitoring of small populations, the role of 'intraguild predation' in the elimination of the freshwater amphipod Gammarus duebeni celticus by the introduced G. pulex was examined. Over 18 weeks, deaths in single and mixed species replicates were monitored. Rates of 'mortality' (deaths not due to cannibalism or predation) did not differ between the species. Gammarus cl. celticus, however, was more cannibalistic than G. pulex and, in both species, males were more often cannibalized than females. In mixed species replicates, the mean proportions of animals preyed upon did not differ among replicates with differing starting proportions of the two species, nor was there a difference between the sexes in numbers preyed upon. G. pulex, however, preyed more frequently on G. d celticus than vice versa, and this became more pronounced over time. In 87% of mixed species replicates, G. pulex eliminated G. d. celticus. The results support the proposition that intraguild predation may be the primary mechanism whereby G. pulex rapidly replaces G. d. celticus in freshwater. Integrating behavioural observations with population level monitoring may thus link pattern and process in behaviour and ecology.