20 resultados para Sedimentary sands
Resumo:
The bacterial community composition and biomass abundance from a depositional mud belt in the western Irish Sea and regional sands were investigated by phospholipid ester-linked fatty acid profiling, denaturing gradient gel electrophoresis and barcoded pyrosequencing of 16S rRNA genes. The study area varied by water depth (12-111 m), organic carbon content (0.09-1.57% TOC), grain size, hydrographic regime (well-mixed vs. stratified), and water column phytodetrital input (represented by algal polyunsaturated PLFA). The relative abundance of bacterial-derived PLFA (sum of methyl-branched, cyclopropyl and odd-carbon number PLFA) was positively correlated with fine-grained sediment, and was highest in the depositional mud belt. A strong association between bacterial biomass and eukaryote primary production was suggested based on observed positive correlations with total nitrogen and algal polyunsaturated fatty acids. In addition, 16S rRNA genes affiliated to the classes Clostridia and Flavobacteria represented a major proportion of total 16S rRNA gene sequences. This suggests that benthic bacterial communities are also important degraders of phytodetrital organic matter and closely coupled to water column productivity in the western Irish Sea.
Resumo:
We performed electrical measurements on sands flushed with bacterial suspensions of varying concentration. The first experiment was conducted with Shewanella putrefaciens (biomass 0â??0.5 mg/L) and the second with Escherichia coli (biomass 0â??42 mg/L). We measured a biomass-dependent low-frequency (10 Hz) polarization. At cell density 12 mg/L polarization increased (up to 15%). We attribute the decrease in polarization at low cell density to alteration of the mineral-fluid interface due to mineral-cell interactions. The polarization enhancement at higher cell density is possibly a pore throat mechanism resulting from decreased ionic mobility and/or electron transfer due to cell accumulation in pores.
Resumo:
Iron and Mn redistribute in soil and saprolite during weathering. The geological weathering fronts ofcalcareous sedimentary rock were investigated by examining the bulk density, porosity, and distribution ofCa, Fe, and Mn. Core samples were taken ofsoil, saprolite, and bedrock material from both summit (HHMS-4B) and sideslope (HHMS-5A) positions on an interbedded Nolichucky shale and Maryville limestone landform in Solid Waste Storage Area 6 (SWSA-6). This is a low-level radioactive solids waste disposal site on the Dept. ofEnergy (DOE) Oak Ridge Reservation in Roane County Tennessee. This work was initiated because data about the properties of highly weathered sedimentary rock on this site were limited. The core samples were analyzed for pH, calcium carbonate equivalence (CCE), hydroxylamine-extractable (HA) Mn, and dithionite-citrate (CBD)-extractable Fe and Mn. Low pH values occurred from the soil surface down to the depth of the oxidized and leached saprolite in both cores. The CCE and HA-extractable Mn results were also influenced by the weathering that has occurred in these zones. Extractable Mn oxide was higher at a lower depth in the oxidized and leached saprolite compared with the Fe oxide, which was higher in the overlying soil solum. Amounts of Mn oxides were higher in the sideslope core (HHMS-5A) than in the summit core (HHMS-4B). Iron was more abundant in the deeper weathered summit core, but the highest value, 39.4 g kg-1, was found at 1.8 to 2.4 m in the sideslope core. The zone encompassing the oxidized and partially leached saprolite down to the unoxidized and unleached bedrock had higher densities and larger quantities of CaCO3 than the soil solum and oxidized and leached saprolite. The overlying soil and oxidized and leached saprolite had lower pH and CCE values and were higher in Fe and Mn oxides than the oxidized and unleached saprolite. The distribution of Fe and Mn is important when evaluating soil and saprolite for hazardous waste disposal site assessment.
Resumo:
It is more than a decade since scientists in the UK put forward evidence of a link between the emergence of a new variant of Creutzfeldt-Jakob Disease (vCJD) in humans, and a diminishing epidemic of Bovine Spongiform Encephalopathy, or BSE, in cattle. In the wake of this anniversary, the paper revisits two scientific narratives of risk, forged at different points along the developmental pathway of BSE science, including a series of advisory reports provided to the UK government between 1989 and 1994, and a symposium held in 2001 to assess the impact of the Phillips Inquiry. While the primary pathology of BSE became apparent relatively early on, uncertainties remain about the origins of BSE and its human variant, vCJD. The paper examines the handling of this sensitivity, and its communication, within these key documents, noting changes in patterns of uncertainty construction over time.
Resumo:
Particulate colloids often occur together with proteins in sewage-impacted water. Using Bovine Serum Albumin (BSA) as a surrogate for protein in sewage, column experiments investigating the capacity of iron-oxide coated sands to remove latex microspheres from water revealed that microsphere attenuation mechanisms depended on antecedent BSA coverage. Dual pulse experiment (DPE) results suggested that where all BSA was adsorbed, subsequent multiple pore volume microsphere breakthrough curves reflected progressively reduced colloid deposition rates with increasing adsorbed BSA content. Modelling colloid responses suggested adsorption of 1 µg BSA generated the same response as blockage by between 7.1x108 and 2.3x109 deposited microspheres. By contrast, microsphere responses in DPEs where BSA coverage of the deposition sites approached/ reached saturation revealed the coated sand maintained a finite capacity to attenuate microspheres, even when incapable of further BSA adsorption. Subsequent microsphere breakthrough curves demonstrated the matrix’s colloid attenuation capacity progressively increased with continued microsphere deposition. Experimental findings suggested BSA adsorption on the sand surface approaching/ reaching saturation generated attractive deposition sites for colloids, which became progressively more attractive with further colloid deposition (filter ripening). Results demonstrate that adsorption of a single type of protein may either enhance or inhibit colloid mobility in saturated porous media.
Resumo:
Arcellacea (testate lobose amoebae) communities were assessed from 73 sediment-water interface samples collected from 33 lakes in urban and rural settings within the Greater Toronto Area (GTA), Ontario, Canada, as well as from forested control areas in the Lake Simcoe area, Algonquin Park and eastern Ontario. The results were used to: (1) develop a statistically rigorous arcellacean-based training set for sedimentary phosphorus (Olsen P (OP)) loading; and (2) derive a transfer function to reconstruct OP levels during the post-European settlement era (AD1870s onward) using a chronologically well-constrained core from Haynes Lake on the environmentally sensitive Oak Ridges Moraine, within the GTA. Ordination analysis indicated that OP most influenced arcellacean assemblages, explaining 6.5% (p < 0.005) of total variance. An improved training set where the influence of other important environmental variables (e.g. total organic carbon, total nitrogen, Mg) was reduced, comprised 40 samples from 31 lakes, and was used to construct a transfer function for lacustrine arcellaceans for sedimentary phosphorus (Olsen P) using tolerance downweighted weighted averaging (WA-Tol) with inverse deshrinking (RMSEPjack-77pp; r2jack = 0.68). The inferred reconstruction indicates that OP levels remained near pre-settlement background levels from settlement in the late AD 1970s through to the early AD 1970s. Since OP runoff from both forests and pasture is minimal, early agricultural land use within the lake catchment was as most likely pasture and/or was used to grow perennial crops such as Timothy-grass for hay. A significant increase in inferred OP concentration beginning ~ AD 1972 may have been related to a change in crops (e.g. corn production) in the catchment resulting in more runoff, and the introduction of chemical fertilizers. A dramatic decline in OP after ~ AD 1985 probably corresponds to a reduction in chemical fertilizer use related to advances in agronomy, which permitted a more precise control over required fertilizer application. Another significant increase in OP levels after ~ AD 1995 may have been related to the construction of a large golf course upslope and immediately to the north of Haynes Lake in AD 1993, where significant fertilizer use is required to maintain the fairways. These results demonstrate that arcellaceans have great potential for reconstructing lake water geochemistry and will complement other proxies (e.g. diatoms) in paleolimnological research.
Resumo:
Knowledge of groundwater flow/mass transport, in poorly productive aquifers which underlie over 65% of the island of Ireland, is necessary for effective management of catchment water quality and aquatic ecology. This research focuses on a fractured low-grade Ordovician/Silurian greywacke sequence which underlies approximately 25% of the northern half of Ireland. Knowledge of the unit’s hydrogeological properties remain largely restricted to localised single well open hole “transmissivity” values. Current hydrogeological conceptual models of the Greywacke view the bulk of groundwater flowing through fractures in an otherwise impermeable bedrock mass.
Core analysis permits fracture characterisation, although not all identified fractures may be involved in groundwater flow. Traditional in-situ hydraulic characterisation relies on cumbersome techniques such as packer testing or geophysical borehole logging (e.g. flowmeters). Queen’s University Belfast is currently carrying out hydraulic characterization of 16 boreholes at its Greywacke Hydrogeological Research Site at Mount Stewart, Northern Ireland.
Development of dye dilution methods, using a recently-developed downhole fluorometer, provided a portable, user-friendly, and inexpensive means of detecting hydraulically active intervals in open boreholes. Measurements in a 55m deep hole, three days following fluorescent dye injection, demonstrated the ability of the technique to detect two discrete hydraulically active intervals corresponding to zones identified by caliper and heat-pulse flowmeter logs. High resolution acoustic televiewer logs revealed the zones to correspond to two steeply dipping fractured intervals. Results suggest the rock can have effective porosities of the order of 0.1%.
Study findings demonstrate dye dilution’s utility in characterizing groundwater flow in fractured aquifers. Tests on remaining holes will be completed at different times following injection to identify less permeable fractures and develop an improved understanding of the structural controls on groundwater flow in the uppermost metres of competent bedrock.
Resumo:
Antarctic ice-free areas contain lakes and ponds that have interesting limnological features and are of wide global significance as early warning indicators of climatic and environmental change. However, most linmological and paleolimnological studies in continental Antarctica are limited to certain regions. There are several ice-free areas in Victoria Land that have not yet been studied well. There is therefore a need to extend limnological studies in space and time to understand how different geological and climatic features affect the composition and biological activity of freshwater communities. With the aim of contributing to a better limnological characterization of Victoria Land, this paper reports data on sedimentary pigments (used to identify the main algal taxa) obtained through a methodology that is more sensitive and selective than that of previous studies. Analyses were extended to 48 water bodies in ice-free areas with differing lithology, latitude, and altitude, and with different morphometry and physical, chemical, and biological characteristics in order to identify environmental factors affecting the distribution and composition of freshwater autotrophic communities. A wider knowledge of lakes in a limnologically important region of Antarctica was obtained. Cyanophyta was found to be the most important algal group, followed by Chlorophyta and Bacillariophyta, whereas latitude and altitude are the main factors affecting pigment distribution.