5 resultados para Schooling of Newly Arrived Immigrant Pupils
Resumo:
Recently, the prevalence of Fasciola hepatica in some areas has increased considerably and the availability of a vaccine to protect livestock from infection would represent a major advance in tools available for controlling this disease. To date, most vaccine-target discovery research on this parasite has concentrated on proteomic and transcriptomic approaches whereas little work has been carried out on glycosylation. As the F. hepatica tegument (Teg) may contain glycans potentially relevant to vaccine development and the Newly Excysted Juvenile (NEJ) is the first lifecycle stage in contact with the definitive host, our work has focused on assessing the glycosylation of the NEJTeg and identifying the NEJTeg glycoprotein repertoire. After in vitro excystation, NEJ were fixed and NEJTeg was extracted. Matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of released N-glycans revealed that oligomannose and core-fucosylated truncated N-glycans were the most dominant glycan types. By lectin binding studies these glycans were identified mainly on the NEJ surface, together with the oral and ventral suckers. NEJTeg glycoproteins were affinity purified after targeted biotinylation of the glycans and identified using liquid chromatography and tandem mass spectrometry (LC-MS/MS). From the total set of proteins previously identified in NEJTeg, eighteen were also detected in the glycosylated fraction, including the F. hepatica Cathepsin B3 (FhCB3) and two of the Cathepsin L3 (FhCL3) proteins, among others. To confirm glycosylation of cathepsins, analysis at the glycopeptide level by LC-ESI-ion-trap-MS/MS with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) was carried out. We established that cathepsin B1 (FhCB1) on position N80, and FhCL3 (BN1106_s10139B000014, scaffold10139) on position N153, carry unusual paucimannosidic Man2GlcNAc2 glycans. To our knowledge, this is the first description of F. hepatica NEJ glycosylation and the first report of N-glycosylation of F. hepatica cathepsins. The significance of these findings for immunological studies and vaccine development is discussed.
Resumo:
The observed line intensity ratios of the Si ii λ1263 and λ1307 multiplets to that of Si ii λ1814 in the broad-line region (BLR) of quasars are both an order of magnitude larger than the theoretical values. This was first pointed out by Baldwin et al., who termed it the "Si ii disaster," and it has remained unresolved. We investigate the problem in the light of newly published atomic data for Si ii. Specifically, we perform BLR calculations using several different atomic data sets within the CLOUDY modeling code under optically thick quasar cloud conditions. In addition, we test for selective pumping by the source photons or intrinsic galactic reddening as possible causes for the discrepancy, and we also consider blending with other species. However, we find that none of the options investigated resolve the Si ii disaster, with the potential exception of microturbulent velocity broadening and line blending. We find that a larger microturbulent velocity () may solve the Si ii disaster through continuum pumping and other effects. The CLOUDY models indicate strong blending of the Si ii λ1307 multiplet with emission lines of O i, although the predicted degree of blending is incompatible with the observed λ1263/λ1307 intensity ratios. Clearly, more work is required on the quasar modeling of not just the Si ii lines but also nearby transitions (in particular those of O i) to fully investigate whether blending may be responsible for the Si ii disaster.
Resumo:
Background: Many school-based interventions are being delivered in the absence of evidence of effectiveness (Snowling & Hulme, 2011, Br. J. Educ. Psychol., 81, 1).Aim: This study sought to address this oversight by evaluating the effectiveness of the commonly used the Lexia Reading Core5 intervention, with 4- to 6-year-old pupils in Northern Ireland.Sample: A total of 126 primary school pupils in year 1 and year 2 were screened on the Phonological Assessment Battery 2nd Edition (PhAB-2). Children were recruited from the equivalent year groups to Reception and Year 1 in England and Wales, and Pre-kindergarten and Kindergarten in North America.
Methods: A total of 98 below-average pupils were randomized (T0) to either an 8-week block (inline image = 647.51 min, SD = 158.21) of daily access to Lexia Reading Core5 (n = 49) or a waiting-list control group (n = 49). Assessment of phonological skills was completed at post-intervention (T1) and at 2-month follow-up (T2) for the intervention group only.
Results: Analysis of covariance which controlled for baseline scores found that the Lexia Reading Core5 intervention group made significantly greater gains in blending, F(1, 95) = 6.50, p = .012, partial η2 = .064 (small effect size) and non-word reading, F(1, 95) = 7.20, p = .009, partial η2 = .070 (small effect size). Analysis of the 2-month follow-up of the intervention group found that all group treatment gains were maintained. However, improvements were not uniform among the intervention group with 35% failing to make progress despite access to support. Post-hoc analysis revealed that higher T0 phonological working memory scores predicted improvements made in phonological skills.
Conclusions: An early-intervention, computer-based literacy program can be effective in boosting the phonological skills of 4- to 6-year-olds, particularly if these literacy difficulties are not linked to phonological working memory deficits.
Resumo:
Considers the Northern Ireland Queen’s Bench Division ruling in Murray v McCullough concerning the duty of care incumbent upon the school with regard to the wearing of mouth guards by pupils when playing hockey. Comments on the limitations of the legal doctrine of in loco parentis in cases of professional negligence and, how ‘sports law’ jurisprudence might prove instructive in sports negligence cases.
Resumo:
Fascioliasis (or fasciolosis) is a socioeconomically important parasitic disease caused by liver flukes of the genus Fasciola. Flukicide resistance has exposed the need for new drugs and/or a vaccine for liver fluke control. A rapidly improving 'molecular toolbox' for liver fluke encompasses quality genomic/transcriptomic datasets and an RNA interference platform that facilitates functional genomics approaches to drug/vaccine target validation. The exploitation of these resources is undermined by the absence of effective culture/maintenance systems that would support in vitro studies on juvenile fluke development/biology. Here we report markedly improved in vitro maintenance methods for Fasciola hepatica that achieved 65% survival of juvenile fluke after 6 months in standard cell culture medium supplemented with 50% chicken serum. We discovered that this long-term maintenance was dependent upon fluke growth, which was supported by increased proliferation of cells resembling the "neoblast" stem cells described in other flatworms. Growth led to dramatic morphological changes in juveniles, including the development of the digestive tract, reproductive organs and the tegument, towards more adult-like forms. The inhibition of DNA synthesis prevented neoblast-like cell proliferation and inhibited growth/development. Supporting our assertion that we have triggered the development of juveniles towards adult-like fluke, mass spectrometric analyses showed that growing fluke have an excretory/secretory protein profile that is distinct from that of newly-excysted juveniles and more closely resembles that of ex vivo immature and adult fluke. Further, in vitro maintained fluke displayed a transition in their movement from the probing behaviour associated with migrating stage worms to a slower wave-like motility seen in adults. Our ability to stimulate neoblast-like cell proliferation and growth in F. hepatica underpins the first simple platform for their long-term in vitro study, complementing the recent expansion in liver fluke resources and facilitating in vitro target validation studies of the developmental biology of liver fluke.