3 resultados para Scene understanding


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present a convolutional neuralnetwork (CNN)-based model for human head pose estimation inlow-resolution multi-modal RGB-D data. We pose the problemas one of classification of human gazing direction. We furtherfine-tune a regressor based on the learned deep classifier. Next wecombine the two models (classification and regression) to estimateapproximate regression confidence. We present state-of-the-artresults in datasets that span the range of high-resolution humanrobot interaction (close up faces plus depth information) data tochallenging low resolution outdoor surveillance data. We buildupon our robust head-pose estimation and further introduce anew visual attention model to recover interaction with theenvironment. Using this probabilistic model, we show thatmany higher level scene understanding like human-human/sceneinteraction detection can be achieved. Our solution runs inreal-time on commercial hardware