46 resultados para Scale-up
Resumo:
A procedure has been developed to grow ZSM-5 crystals in situ on a molybdenum (Mo) support. The high heat conductivity (138 W/mK) and high mechanical stability at elevated temperatures of the Mo support allow the application of ZSM-5 coatings in micro reactors for high temperature processes involving large heat effects. The effect of the synthesis mixture composition on ZSM-5 coverage and on the uniformity of the ZSNI-5 coatings was investigated on plates of 10 X 10 mm(2). Ratios of H2O/Si = 50, SUAI = 25, and TPA/Al = 2.0 were found to be optimal for the formation of uniform coatings of 6 g/m(2) at a temperature of 150 degrees C and a synthesis time of 48 h. Scaling up of the synthesis procedure on 72 Mo plates of 40 x 9.8 x 0.1 mm 3 resulted in a uniform coverage of 14.8 +/- 0.4 g/m(2). The low deviation per individual plate (
Resumo:
Grinding solid reagents under solvent-free or low-solvent conditions (mechanochemistry) is emerging as a general synthetic technique which is an alternative to conventional solvent-intensive methods. However, it is essential to find ways to scale-up this type of synthesis if its promise of cleaner manufacturing is to be realised. Here, we demonstrate the use of twin screw and single screw extruders for the continuous synthesis of various metal complexes, including Ni(salen), Ni(NCS)(2)(PPh3)(2) as well as the commercially important metal organic frameworks (MOFs) Cu-3(BTC)(2) (HKUST-1), Zn(2-methylimidazolate)(2) (ZIF-8, MAF-4) and Al(fumarate)(OH). Notably, Al(fumarate)(OH) has not previously been synthesised mechanochemically. Quantitative conversions occur to give products at kg h(-1) rates which, after activation, exhibit surface areas and pore volumes equivalent to those of materials produced by conventional solvent-based methods. Some reactions can be performed either under completely solvent-free conditions whereas others require the addition of small amounts of solvent (typically 3-4 mol equivalents). Continuous neat melt phase synthesis is also successfully demonstrated by both twin screw and single screw extrusion for ZIF-8. The latter technique provided ZIF-8 at 4 kg h(-1). The space time yields (STYs) for these methods of up to 144 x 10(3) kg per m(3) per day are orders of magnitude greater than STYs for other methods of making MOFs. Extrusion methods clearly enable scaling of mechanochemical and melt phase synthesis under solvent-free or low-solvent conditions, and may also be applied in synthesis more generally.
Resumo:
Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing.
Resumo:
We present a synthesis of empirical and theoretical work investigating how parasites influence competitive and predatory interactions between other species. We examine the direct and indirect effects of parasitism and discuss examples of density and parasite-induced trait-mediated effects. Recent work reveals previously unrecognized complexity in parasite-mediated interactions. In addition to parasite-modified and apparent competition leading to species exclusion or enabling coexistence, parasites and predators interact in different ways to regulate or destablize the population dynamics of their joint prey. An emerging area is the impact of parasites on intraguild predation (IGP). Parasites can increase vulnerability of infected individuals to cannibalism or predation resulting in reversed species dominance in IGP hierarchies. We discuss the potential significance of parasites for community structure and biodiversity, in particular their role in promoting species exclusion or coexistence and the impact of emerging diseases. Ongoing invasions provide examples where parasites mediate native/invader interactions and play a key role in determining the outcome of invasions. We highlight the need for more quantitative data to assess the impact of parasites on communities, and the combination of theoretical and empirical studies to examine how the effects of parasitism scale up to community-level processes.
Resumo:
This work involved the treatment of industrial waste water from a nylon carpet printing plant. As dyeing of nylon is particularly difficult, acid dyes, fixing agents, thickeners, finishing agents, are required for successful colouration and cause major problems with the plant's effluent disposal in terms of chemical oxygen demand (COD). Granular activated carbon (GAC) Filtrasorb 400 was used to treat a simulated process plant effluent containing all the pollutants. Equilibrium isotherm experiments were established and experimental data obtained showed good empirical correlation with Langmuir isotherm theory. Column experimental data, in terms of COD were correlated using the bed depth service time (BDST) model. Solid phase loading in the columns were found to approach that in equilibrium studies indicating an efficient use of adsorbent. The results from the BDST model were then used to design a pilot adsorption rig at the plant. The performance of the pilot plant column were accurately predicted by scale-up from the bench scale columns. (C) 2001 Elsevier Science BN. All rights reserved.
Resumo:
Poverty alleviation lies at the heart of contemporary international initiatives on development. The key to development is the creation of an environment in which people can develop their potential, leading productive, creative lives in accordance with their needs, interests and faith. This entails, on the one hand, protecting the vulnerable from things that threaten their survival, such as inadequate nutrition, disease, conflict, natural disasters and the impact of climate change, thereby enhancing the poor’s capabilities to develop resilience in difficult conditions. On the other hand, it also requires a means of empowering the poor to act on their own behalf, as individuals and communities, to secure access to resources and the basic necessities of life such as water, food, shelter, sanitation, health and education. ‘Development’, from this perspective, seeks to address the sources of human insecurity, working towards ‘freedom from want, freedom from fear’ in ways that empower the vulnerable as agents of development (not passive recipients of benefaction).
Recognition of the magnitude of the problems confronted by the poor and failure of past interventions to tackle basic issues of human security led the United Nations (UN) in September 2000 to set out a range of ambitious, but clearly defined, development goals to be achieved by 2015. These are known as the Millennium Development Goals (MDGs). The intention of the UN was to mobilise multilateral international organisations, non-governmental organisations and the wider international community to focus attention on fulfilling earlier promises to combat global poverty. This international framework for development prioritises: the eradication of extreme poverty and hunger; achieving universal primary education; promoting gender equality and empowering women; reducing child mortality; improving maternal health; combating HIV/AIDS, malaria and other diseases; ensuring environmental sustainability; and developing a global partnership for development. These goals have been mapped onto specific targets (18 in total) against which outcomes of associated development initiatives can be measured and the international community held to account. If the world achieves the MDGs, more than 500 million people will be lifted out of poverty. However, the challenges the goals represent are formidable. Interim reports on the initiative indicate a need to scale-up efforts and accelerate progress.
Only MDG 7, Target 11 explicitly identifies shelter as a priority, identifying the need to secure ‘by 2020 a significant improvement in the lives of at least 100 million slum dwellers’. This raises a question over how Habitat for Humanity’s commitment to tackling poverty housing fits within this broader international framework designed to allievate global poverty. From an analysis of HFH case studies, this report argues that the processes by which Habitat for Humanity tackles poverty housing directly engages with the agenda set by the MDGs. This should not be regarded as a beneficial by-product of the delivery of decent, affordable shelter, but rather understood in terms of the ways in which Habitat for Humanity has translated its mission and values into a participatory model that empowers individuals and communities to address the interdependencies between inadequate shelter and other sources of human insecurity. What housing can deliver is as important as what housing itself is.
Examples of the ways in which Habitat for Humanity projects engage with the MDG framework include the incorporation of sustainable livelihoods strategies, up-grading of basic infrastructure and promotion of models of good governance. This includes housing projects that have also offered training to young people in skills used in the construction industry, microfinanced loans for women to start up their own home-based businesses, and the provision of food gardens. These play an important role in lifting families out of poverty and ensuring the sustainability of HFH projects. Studies of the impact of improved shelter and security of livelihood upon family life and the welfare of children evidence higher rates of participation in education, more time dedicated to study and greater individual achievement. Habitat for Humanity projects also typically incorporate measures to up-grade the provision of basic sanitation facilities and supplies of safe, potable drinking water. These measures not only directly help reduce mortality rates (e.g. diarrheal diseases account for around 2 million deaths annually in children under 5), but also, when delivered through HFH project-related ‘community funds’, empower the poor to mobilise community resources, develop local leadership capacities and even secure de facto security of tenure from government authorities.
In the process of translating its mission and values into practical measures, HFH has developed a range of innovative practices that deliver much more than housing alone. The organisation’s participatory model enables both direct beneficiaries and the wider community to tackle the insecurities they face, unlocking latent skills and enterprise, building sustainable livelihood capabilities. HFH plays an important role as a catalyst for change, delivering through the vehicle of housing the means to address the primary causes of poverty itself. Its contribution to wider development priorities deserves better recognition. In calibrating the success of HFH projects in terms of units completed or renovated alone, the significance of the process by which HFH realises these outcomes is often not sufficiently acknowledged, both within the organisation and externally. As the case studies developed in the report illustrate, the methodologies Habitat for Humanity employs to address the issue of poverty housing within the developing world, place the organisation at the centre of a global strategic agenda to address the root causes of poverty through community empowerment and the transformation of structures of governance.
Given this, the global network of HFH affiliates constitutes a unique organisational framework to faciliate sharing resources, ideas and practical experience across a diverse range of cultural, political and institutional environments. This said, it is apparent that work needs to be done to better to faciliate the pooling of experience and lessons learnt from across its affiliates. Much is to be gained from learning from less successful projects, sharing innovative practices, identifying strategic partnerships with donors, other NGOs and CBOs, and engaging with the international development community on how housing fits within a broader agenda to alleviate poverty and promote good governance.
Resumo:
We report herein the screening, optimisation and scale up to 100 g of a bioreduction process that employs an in situ product removal (ISPR) technique to overcome the inherent equilibrium problem associated with the coupled-substrate approach to biocatalytic carbonyl reduction. This technique allowed the valuable chiral alcohol, (S)-2-bromo-2-cyclohexen-1-ol, to be isolated in 88% yield and 99.8% ee without the need for further purification, validating the general applicability of this experimental setup.
Resumo:
Background: Large-scale randomised controlled trials are relatively rare in education. The present study approximates to, but is not exactly, a randomised controlled trial. It was an attempt to scale up previous small peer tutoring projects, while investing only modestly in continuing professional development for teachers.Purpose: A two-year study of peer tutoring in reading was undertaken in one local education authority in Scotland. The relative effectiveness of cross-age versus same-age tutoring, light versus intensive intervention, and reading versus reading and mathematics tutoring were investigated.Programme description (if relevant): The intervention was Paired Reading, a freely available cross-ability tutoring method applied to books of the pupils' choice but above the tutee's independent readability level. It involves Reading Together and Reading Alone, and switching from one to the other according to need.Sample: Eighty-seven primary schools of overall average socio-economic status, ability and gender in one council in Scotland. There were few ethnic minority students. Proportions of students with special needs were low. Children were eight and 10 years old as the intervention started. Macro-evaluation n = 3520. Micro-evaluation Year 1 15 schools n = 592, Year 2 a different 15 schools n = 591, compared with a comparison group of five schools n = 240.Design and methods: Almost all the primary schools in the local authority participated and were randomly allocated to condition. A macro-evaluation tested and retested over a two-year period using Performance Indicators in Primary Schools. A micro-evaluation tested and retested within each year using norm-referenced tests of reading comprehension. Macro-evaluation was with multi-level modelling, micro-evaluation with descriptive statistics and effect sizes, analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA).Results: Macro-evaluation yielded significant pre-post gains in reading attainment for cross-age tutoring over both years. No other differences were significant. Micro-evaluation yielded pre-post changes in Year 1 (selected) and Year 2 (random) greater than controls, with no difference between same-age and cross-age tutoring. Light and intensive tutoring were equally effective. Tutoring reading and mathematics together was more effective than only tutoring reading. Lower socio-economic and lower reading ability students did better. Girls did better than boys. Regarding observed implementation quality, some factors were high and others low. Few implementation variables correlated with attainment gain.Conclusions: Paired Reading tutoring does lead to better reading attainment compared with students not participating. This is true in the long term (macro-evaluation) for cross-age tutoring, and in the short term (micro-evaluation) for both cross-age and same-age tutoring. Tutors and tutees benefited. Intensity had no effect but dual tutoring did have an effect. Low-socio-economic status, low-ability and female students did better. The results of the different forms of evaluation were indeed different. There are implications for practice and for future research. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Microcrystalline indium(III) selenide was prepared from a diphenyl diselenide precursor and a range of chloroindate(III) ionic liquids via a microwave-assisted ionothermal route; this is the first report on the use of either microwave irradiation or ionic liquids to prepare this material. The influence of the reaction temperature, dilution with a spectator ionic liquid and variation of the cation and the anion of the ionic liquid on the product morphology and composition were investigated. This resulted in a time-efficient and facile one-pot reaction to produce microcrystalline indium(III) selenide. The product formation in the ionic liquids has been monitored using Raman spectroscopy. The products have been characterised using PXRD, SEM and EDX. Advantages of this new route, such as the ease of solubilisation of all reactants into one phase at high concentration, the negligible vapour pressure irrespective of the reaction temperature, very fast reaction times, ease of potential scale-up and reproducibility are discussed.
Resumo:
Zinc selenide nanospheres were prepared from a diphenyl diselenide precursor and a range of chloro- and bromozincate(II) ionic liquids via a microwave-assisted ionothermal route; this is the first report on the use of microwave irradiation in combination with ionic liquids to prepare this material. The method is a time-efficient and a facile one-pot reaction to produce zinc(II) selenide nanomaterials. The product formation in the ionic liquids has been monitored using Raman spectroscopy. The products have been characterised using PXRD, SEM, EDX, photoluminescence and UV-VIS spectroscopy. Advantages of this new route, such as ease of solubilisation of all reactants into one phase at high concentration, the negligible vapour pressure irrespective of the reaction temperature, very fast reaction times, ease of potential scale-up and reproducibility are discussed.
Resumo:
Research in the field of photocatalytic reactors in the past three decades has been an area of extensive and diverse activity with an extensive range of suspended and fixed film photocatalyst configurations being reported. The key considerations for photocatalytic reactors, however, remain the same; effective mass transfer of pollutants to the photocatalyst surface and effective deployments and illumination of the photocatalyst. Photocatalytic reactors have the potential versatility to be applied to the remediation of a range of water and gaseous effluents. Furthermore they have also been applied to the treatment of potable waters. The scale-up of photocatalytic reactors for waste and potable water treatment plants has also been demonstrated. Systems for the reduction of carbon dioxide to fuel products have also been reported. This paper considers the main photocatalytic reactor configurations that have been reported to date.
Resumo:
INTRODUCTION: Transdermal drug delivery offers a number of advantages for the patient, not only due to its non-invasive and convenient nature, but also due to factors such as avoidance of first-pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedles (MNs) can increase the number of compounds amenable to transdermal delivery by penetrating the skin's protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below.
AREAS COVERED: MNs have been extensively investigated for drug and vaccine delivery. The different types of MN arrays and their delivery capabilities are discussed in terms of drugs, including biopharmaceutics and vaccines. Patient usage and effects on the skin are also considered.
EXPERT OPINION: MN research and development is now at the stage where commercialisation is a viable possibility. There are a number of long-term safety questions relating to patient usage which will need to be addressed moving forward. Regulatory guidance is awaited to direct the scale-up of the manufacturing process alongside provision of clearer patient instruction for safe and effective use of MN devices.
Resumo:
The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a similar to 3 ns duration neutron pulse with 10(4) n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.
Resumo:
A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14 × 14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%.
Resumo:
Porous solids such as zeolites and metal-organic frameworks are useful in molecular separation and in catalysis, but their solid nature can impose limitations. For example, liquid solvents, rather than porous solids, are the most mature technology for post-combustion capture of carbon dioxide because liquid circulation systems are more easily retrofitted to existing plants. Solid porous adsorbents offer major benefits, such as lower energy penalties in adsorption-desorption cycles, but they are difficult to implement in conventional flow processes. Materials that combine the properties of fluidity and permanent porosity could therefore offer technological advantages, but permanent porosity is not associated with conventional liquids. Here we report free-flowing liquids whose bulk properties are determined by their permanent porosity. To achieve this, we designed cage molecules that provide a well-defined pore space and that are highly soluble in solvents whose molecules are too large to enter the pores. The concentration of unoccupied cages can thus be around 500 times greater than in other molecular solutions that contain cavities, resulting in a marked change in bulk properties, such as an eightfold increase in the solubility of methane gas. Our results provide the basis for development of a new class of functional porous materials for chemical processes, and we present a one-step, multigram scale-up route for highly soluble 'scrambled' porous cages prepared from a mixture of commercially available reagents. The unifying design principle for these materials is the avoidance of functional groups that can penetrate into the molecular cage cavities.