7 resultados para Scaffold, Calcium silicate, Bone regeneration, Mechanical strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global warming, energy savings, and life cycle analysis issues are factors that have contributed to the rapid expansion of plant-based materials for buildings, which can be qualified as environmental-friendly, sustainable and efficient multifunctional materials. This review presents an overview on the several possibilities developed worldwide about the use of plant aggregate to design bio-based building materials. The use of crushed vegetal aggregates such as hemp (shiv), flax, coconut shells and other plants associated to mineral binder represents the most popular solution adopted in the beginning of this revolution in building materials. Vegetal aggregates are generally highly porous with a low apparent density and a complex architecture marked by a multi-scale porosity. These geometrical characteristics result in a high capacity to absorb sounds and have hygro-thermal transfer ability. This is one of the essential characteristics which differ of vegetal concrete compared to the tradition mineral-based concretes. In addition, the high flexibility of the aggregates leads to a non-fragile elasto-plastic behavior and a high deformability under stress, lack of fracturing and marked ductility with absorbance of the strains ever after having reached the maximum mechanical strength. Due to the sensitivity to moisture, the assessment of the durability of vegetal concrete constitutes one of the next scientific challenging of bio-based building materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integral variability of raw materials, lack of awareness and appreciation of the technologies for achieving quality control and lack of appreciation of the micro and macro environmental conditions that the structures will be subjected, makes modern day concreting a challenge. This also makes Designers and Engineers adhere more closely to prescriptive standards developed for relatively less aggressive environments. The data from exposure sites and real structures prove, categorically, that the prescriptive specifications are inadequate for chloride environments. In light of this shortcoming, a more pragmatic approach would be to adopt performance-based specifications which are familiar to industry in the form of specification for mechanical strength. A recently completed RILEM technical committee made significant advances in making such an approach feasible.
Furthering a performance-based specification requires establishment of reliable laboratory and on-site test methods, as well as easy to perform service-life models. This article highlights both laboratory and on-site test methods for chloride diffusivity/electrical resistivity and the relationship between these tests for a range of concretes. Further, a performance-based approach using an on-site diffusivity test is outlined that can provide an easier to apply/adopt practice for Engineers and asset managers for specifying/testing concrete structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: To validate STOPPFrail, a list of explicit criteria for potentially inappropriate medications (PIMs) in frailer older adults with limited life expectancy. A Delphi consensus survey of an expert panel (n = 17) comprising specialists in geriatric medicine, clinical pharmacology, palliative care, psychiatry of old age, clinical pharmacy and general practice.
Methods: STOPPFrail criteria was initially created by the authors based on clinical
experience and appraisal of the available literature. Criteria were organised according to physiological system. Each criterion was accompanied by an explanation. Panellists ranked their agreement with each criterion on a 5-point Likert scale and invited to provide written feedback. Criteria with a median Likert response of 4/5 (agree/strongly agree) and a 25th centile of ≥4 were included in the final criteria.
Results: Three Delphi rounds were required. All panellists completed all rounds. Thirty criteria were proposed for inclusion; 26 were accepted. No new criteria were added. The first two criteria suggest deprescribing medications with no indication or where compliance is poor. The remaining 24 criteria include lipid-lowering therapies, alpha-blockers for hypertension, anti-platelets, neuroleptics, proton pump inhibitors, H-2 receptor antagonists, anti-spasmodics, theophylline, leukotriene antagonists, calcium supplements, bone anti-resorptive therapy, selective oestrogen receptor modulators, non-steroidal antiinflammatories, corticosteroids, 5-alpha reductase inhibitors, alpha-1 selective blockers, muscarinic antagonists, oral diabetic agents, ACE-inhibitors, angiotensin receptor blockers, systemic oestrogens, multivitamins, nutritional supplements and prophylactic antibiotics. Anticoagulants and anti-depressants were excluded. Despite incorporation of panellists’ suggestions, memantine and acetyl-cholinesterase inhibitors remained inconclusive.
Conclusion: STOPPFrail comprises 26 criteria, which have been judged by broad consensus, to be potentially inappropriate in frailer older patients with limited life expectancy. STOPPFrail may assist in deprescribing medications in these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of alkali-activated binders with superior engineering properties and longer durability has emerged as an alternative to ordinary portland cement (OPC). It is possible to use alkali-activated natural pozzolans to prepare environmentally friendly geopolymer cement leading to the concept of sustainable development. This paper presents a summary of an experimental work that was conducted to determine mechanical strength, modulus of elasticity, ultrasonic pulse velocity, and shrinkage of different concrete mixtures prepared with alkali-activated Iranian natural pozzolans—namely Taftan andesite and Shahindej dacite, both with and without calcining. Test data were used for Taftan pozzolan to identify the effects of water-binder ratios (w/b) and curing conditions on the properties of the geopolymer concrete, whereas the influence of material composition was studied by activating Shahindej pozzolan both in the natural and calcined states. The results show that alkali-activated natural pozzolan (AANP) concretes develop moderate-to-high mechanical strength with a high modulus of elasticity and a shrinkage much lower than with OPC.