55 resultados para Savanna woodland
Resumo:
Tree-ring analysis of sub-fossil Pinus sylvestris L. and Quercus sp. and their associated sub-fossil insect assemblages from tree rot holes have been used to study a prehistoric forest buried in the basal peats at Tyrham Hall Quarry, Hatfield Moors SSSI, in the Humberhead Levels, eastern England. The site provided a rare opportunity to examine the date, composition, age structure and entomological biodiversity of a mid-Holocene Pinus-dominated forest. The combined approaches of dendrochronology and palaeoentomology have enabled a detailed picture of the forest to be reconstructed, within a precise time frame. The Pinus chronology has been precisely dated to 2921- 2445 BC against the English Quercus master curve and represents the first English Pinus chronology to be dendrochronologically dated. A suite of important xylophilous (wood-loving) beetles that are today very rare and four species that no longer live within the British Isles were also recovered, their disappearance associated with the decline in woodland habitats as well as possible climate change. The sub-fossil insects indicate that the characteristic species of the site's modern-day fauna were already in place 4000 years ago. These findings have important implications in terms of maintaining long-term invertebrate biodiversity of mire sites.
Resumo:
This paper presents a new review of our knowledge of the ancient forest beetle fauna from Holocene archaeological and palaeoecological sites in Great Britain and Ireland. It examines the colonisation, dispersal and decline of beetle species, highlighting the scale and nature of human activities in the shaping of the landscape of the British Isles. In particular, the paper discusses effects upon the insect fauna, and examines in detail the fossil record from the Humberhead Levels, eastern England. It discusses the local extirpation of up to 40 species in Britain and 15 species in Ireland. An evaluation of the timing of extirpations is made, suggesting that many species in Britain disappear from the fossil record between c. 3000 cal BC and 1000 cal BC (c. 5000-3000 cal BP), although some taxa may well have survived until considerably later. In Ireland, there are two distinct trends, with a group of species which seem to be absent after c. 2000 cal BC (c. 4000 cal BP) and a further group which survives until at least as late as the medieval period. The final clearance of the Irish landscape over the last few hundred years was so dramatic, however, that some species which are not especially unusual in a British context were decimated. Reasons behind the extirpation of taxa are examined in detail, and include a combination of forest clearance and human activities, isolation of populations, lack of temporal continuity of habitats, edaphic and competition factors affecting distribution of host trees (particularly pine), lack of forest fires and a decline in open forest systems. The role of climate change in extirpations is also evaluated. Consideration is given to the significance of these specialised ancient forest inhabitants in Ireland in the absence of an early Holocene land-bridge which suggests that colonisation was aided by other mechanisms, such as human activities and wood-rafting. Finally, the paper discusses the Continental origins of the British and Irish fauna and its hosts and the role played by European glacial refugia.
Resumo:
The savanna elephant is the largest extant mammal and often inhabits hot and and environments. Due to their large size, it might be expected that elephants have particular physiological adaptations, such as adjustments to the rhythms of their core body temperature (T-b) to deal with environmental challenges. This study describes for the first time the T-b daily rhythms in savanna elephants. Our results showed that elephants had lower mean T-b values (36.2 +/- 0.49 degrees C) than smaller ungulates inhabiting similar environments but did not have larger or smaller amplitudes of T-b variation (0.40 +/- 0.12 degrees C), as would be predicted by their exposure to large fluctuations in ambient temperature or their large size. No difference was found between the daily T-b rhythms measured under different conditions of water stress. Peak T-b's occurred late in the evening (22: 10) which is generally later than in other large mammals ranging in similar environmental conditions. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The recent article by Fenton (Fenton JH. 2008. A postulated natural origin for the open landscape of upland Scotland. Plant Ecology & Diversity 1:115–127) has argued that the landscapes of upland Scotland are treeless because of long-term deterioration of soil conditions. There are reasons for thinking that this might be the case in the absence of human activity. However, there have been considerable anthropogenic pressures on these landscapes for several millenia, documented archaeologically and palaeoecologically. Attempting to exclude these pressures from the discussion can only lead to an incomplete and misleading account of a complex series of changes involving an interaction which includes natural vegetational and environmental processes, climatic changes and human pressures.
Resumo:
In recent years, the native woodlands of Europe, including those of Britain and Ireland, have increasingly come under threat from a range of biotic and abiotic factors, and are therefore a conservation priority demanding careful management in order to realise their inherent ecological and cultural benefits. Because the distribution of genetic variation across populations and regions is increasingly considered an important component of woodland management, we carried out a population genetic analysis on black alder (Alnus glutinosa) across Northern Ireland in order to inform “best practice” strategies. Our findings suggest that populations harbour high levels of genetic diversity, with very little differentiation between populations. Significant F IS values were observed in over half of the populations analysed, however, which could reflect inbreeding as a result of the patchy occurrence of alder in Northern Ireland, with scattered, favourable damp habitats being largely isolated from each other by extensive tracts of farmland. Although there is no genetic evidence to support the broad-scale implementation of tree seed zones along the lines of those proposed for native woodlands in Great Britain, we suggest that the localised occurrence of rare chloroplast haplotypes should be taken into account on a case-by-case basis. This, coupled with the identification of populations containing high genetic diversity and that are broadly representative of the region as a whole, will provide a sound genetic basis for woodland management, both in alder and more generally for species that exhibit low levels of genetic differentiation.
Resumo:
Results of a fossil Coleoptera (beetle) fauna from a fen edge sequence from Hatfield Moors, Humberhead Levels, are presented. Mire ontogeny inferred from this location and others are discussed, particularly in the light of previous palynological and plant macrofossil investigations. Peat initiation across most of the site centres around 3000 cal BC, characterised by a Calluna-Eriophorum heath with areas of Pinus-Betula woodland. The onset of peat accumulation on the southern margins of the site was delayed until 1520-1390 cal BC and appears to overlap closely with a recurrence surface at a pollen site (HAT 2) studied by Brian Smith (1985, 2002) dated to 1610-1440 cal BC, suggesting that increased surface wetness may have caused mire expansion at this time. The faunas illustrate the transition from eutrophic and mesotrophic fen to ombrotrophic raised mire, although the significance of both Pinus- and Calluna-indicating species through the sequence suggests that heath habitats may have continued to be important. Elsewhere, this earlier phase of rich fen is lacking and mesotrophic mire developed immediately above nutrient poor sands, with ombrotrophic conditions indicated soon after. Correspondence analysis of the faunas provides valuable insights into the importance of sandy heath habitats on Hatfield Moors. The continuing influence of the underlying coversands suggests these may have been instrumental in mire ontogeny. The research highlights the usefulness of using Coleoptera to assess mire ontogeny, fluctuations in site hydrology and vegetation cover, particularly when used in conjunction with other peatland proxies. The significance of a suite of extinct beetle species is discussed with reference to forest history and climate change.