41 resultados para SYNCHROTRON RADIATION SOURCES
Resumo:
Here is detailed a novel and low-cost experimental method for high-throughput automated fluid sample irradiation. The sample is delivered via syringe pump to a nozzle, where it is expressed in the form of a hanging droplet into the path of a beam of ionising radiation. The dose delivery is controlled by an upstream lead shutter, which allows the beam to reach the droplet for a user defined period of time. The droplet is then further expressed after irradiation until it falls into one well of a standard microplate. The entire system is automated and can be operated remotely using software designed in-house, allowing for use in environments deemed unsafe for the user (synchrotron beamlines, for example). Depending on the number of wells in the microplate, several droplets can be irradiated before any human interaction is necessary, and the user may choose up to 10 samples per microplate using an array of identical syringe pumps, the design of which is described here. The nozzles consistently produce droplets of 25.1 ± 0.5 μl.
Resumo:
The results of a study to characterise the polarisation properties of the photon beam emerging from beamline 5D, mounted on a bending magnet source at the Synchrotron Radiation Source, Daresbury Laboratory, are presented. The expectation values for the Stokes parameters corresponding to the light transmitted by the beamline have been calculated by combining ray-tracing and optical methods. The polarisation of the light at the source is modified both by the beamline geometry and by the reflections at the optical components. Although it is often assumed that the polarising properties of grazing incidence optics are negligible, this assumption leads to rather inaccurate results in the VUV region. A study of the reflectivity shows that even at incidence angles (theta(i) = 80-85degrees) which are far from the Brewster angle (theta(B) similar to 45degrees for VUV and soft X-ray radiation) the residual changes in the amplitudes of the reflected light can result in non-negligible polarisation effects. Furthermore, reflection at grazing incidence gives rise to a substantial change in the phase, and this has the effect of rotating the elliptically polarised state. Theoretical Stokes parameters have been compared with full polarisation measurements obtained using a reflection polarimeter in the energy range 20-40 eV. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Radiation biophysics has sought to understand at a molecular level, the mechanisms through which ionizing radiations damage DNA, and other molecules within living cells. The complexity of lesions produced in the DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. To study the relationship between the energy deposited and the damage produced, we have developed novel techniques for irradiating dry prasmid DNA, partially re-hydrated DNA and DNA in solution using monochromatic vacuum-UV synchrotron radiation. We have used photons in the energy range 7-150 eV, corresponding to the range of energies typically involved in the efficient production of DNA single-strand (SSB), and double-strand breaks (DSB) by ionizing radiation. The data show that both types of breaks are produced at all energies investigated (with, or without water present). Also, the energy dependence for DSB induction follows a similar trend to SSB induction but at a 20-30-fold reduced incidence, suggesting a common precursor for both types of damage. Preliminary studies where DNA has been irradiated in solution indicate a change in the shape of the dose-effect curve (from linear, to linear-quadratic for double-strand break induction) and a large increase in sensitivity due to the presence of water.
Resumo:
We propose a radiation source based on a magnetic mirror cavity. Relativistic electrons are simulated entering the cavity and their trajectories and resulting emission spectra are calculated. The uniformity of the particle orbits is found to result in a frequency comb in terahertz range, the precise energies of which are tunable by varying the electron's gamma-factor. For very high energy particles, radiation friction causes the spectral harmonics to broaden and we suggest this as a possible way to verify competing classical equations of motion.
Resumo:
High resolution synchrotron radiation core level photoemission measurements have been used to undertake a comparative study ofthe high temperature thermal stability ofthe ammonium sulphide passivated InGaAs surface and the same surface following the atomic layer deposition (ALD) of an ultrathin (∼1 nm) Al2O3 layer. The solution based ex situ sulphur passivation was found to be effective at removing a significant amount of the native oxides and protecting the surface against re-oxidation upon air exposure. The residual interfacial oxides which form between sulphur passivated InGaAs and the ultrathin Al2O3 layer can be substantially removed at high temperature (up to 700 ◦C) without impacting on the InGaAs stoichiometry while significant loss of indium was recorded at this temperature on the uncovered sulphur passivated InGaAs surface.
Resumo:
High resolution soft x-ray photoemission spectroscopy (SXPS) have been used to study the high temperature thermal stability of ultra-thin atomic layer deposited (ALD) HfO2 layers (∼1 nm) on sulphur passivated and hydrofluoric acid (HF) treated germanium surfaces. The interfacial oxides which are detected for both surface preparations following HfO2 deposition can be effectively removed by annealing upto 700 °C without any evidence of chemical interaction at the HfO2/Ge interface. The estimated valence and conduction band offsets for the HfO2/Ge abrupt interface indicated that effective barriers exist to inhibit carrier injection.
Resumo:
High-resolution soft x-ray photoemission spectroscopy (SXPS) has been used to study the high-temperature thermal stability of ultra-thin atomic layer deposited (ALD) Al2O3 layers (~1 nm) on sulfur passivated and native oxide covered InAs surfaces. While the arsenic oxides were removed from both interfaces following a 600 °C anneal, a residual indium oxide signal remained. No significant differences were observed between the sulfur passivated and native oxide surfaces other than the thickness of the interfacial oxide layer while the Al2O3 stoichiometry remained unaffected by the anneals. The energy band offsets were determined for the Al2O3 on the sulfur passivated InAs surface using both valence band edge and shallow core-level photoemission measurements.
Resumo:
A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.
High-temperature synchrotron x-ray diffraction study of the phase transformations in titanium alloys