11 resultados para SWIMMING
Resumo:
Studying the flows of parent country nationals in multinational enterprises (MNEs) to subsidiary operations has a relatively long tradition. Studying flows of subsidiary employees to other subsidiaries, as third country nationals, and to the corporate headquarters, as inpatriates, however, has empirically much less pedigree. Drawing on a large-scale empirical study of MNEs in Ireland, this paper provides a benchmark of outward flows of international assignees from the Irish subsidiaries of foreign-owned MNEs to both corporate headquarters and other worldwide operations. Building on insights from the resource-based view and neo-institutional theory, we develop and test a theoretical model to explain outward staffing flows. The results show that almost half of all MNEs use some form of outward staffing flows from their Irish operations. Although the impact of specific variables in explaining inter-organization variation differs between the utilization of inpatriate and third country national assignments, overall we find that a number of headquarters, subsidiary, structural, and human resource systems factors emerge as strong predictors of outward staffing flows. © 2010 Wiley Periodicals, Inc.
Resumo:
Automated sediment toxicity testing and biomonitoring has grown rapidly. This study tested the suitability of the marine amphipod Corophium volutator (Pallas, 1766) for sediment biomonitoring using the Multispecies Freshwater Biomonitor (MFB). Two experiments were undertaken to (1) characterize individual behaviors of C. volutator using the MFB and (2) examine behavioral changes in response to sediment spiked with the pesticide Bioban. Four behaviors were visually identified (walking, swimming, grooming and falling) and characterized in the MFB as different patterns of locomotor activity (0-2 Hz range). Ventilation was not visually observed but was detected by the MFB (2-8 Hz). No clear diel activity patterns were detected. The MFB detected an overall increase in C. volutator locomotor activity after Bioban addition to the sediments (56, 100, 121 mg kg(-1)). C. volutator was more active (both locomotion and ventilation) in the water column than the spiked sediment. C. volutator appears a sensitive and appropriate species for behavioral sediment toxicity assessment and biomonitoring. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Feeding in Dikerogammarus villosus (Sowinsky, 1894) males was observed in the field and recorded on video in the laboratory. The following feeding modes were recognized: detritus feeding, grazing, particle feeding, coprophagy, predation on benthic and free swimming invertebrates, predation on fish eggs and larvae, as well as feeding on byssus threads of the zebra mussel, Dreissena polymorpha (Pallas, 1771). The feeding methods are described and illustrated with screenshots of video recordings. The very flexible feeding modes of D. villosus, which make diet switches possible, form a trait that must be an important factor in the invasion success of this Ponto-Caspian gammaridean species, and may thus explain for a great deal its high ecosystem impact.
Resumo:
Nociception is the ability to perceive a noxious stimulus and react in a re flexive manner and occurs across a wide range of taxa. However, the ability to experience the associated aversive sensation and feeling, known as pain, is not widely accepted to occur in nonvertebrates. We examined the responses of a decapod crustacean, the prawn, Palaemon elegans, to different noxious stimuli applied to one antenna to assess reflex responses (nociception) and longer-term, specifically directed behavioural responses that might indicate pain. We also examined the effects of benzocaine, a local anaesthetic, on these responses. Noxious stimuli elicited an immediate reflex tail flick response, followed by two prolonged activities, grooming of the antenna and rubbing of the antenna against the side of the tank, with both activities directed specifically at the treated antenna. These responses were inhibited by benzocaine; however, benzocaine did not alter general swimming activity and thus the decline in grooming and rubbing is not due to general anaesthesia. Mechanical stimulation by pinching also resulted in prolonged rubbing, but this was not inhibited by benzocaine. These results indicate an awareness of the location of the noxious stimuli, and the prolonged complex responses indicate a central involvement in their organization. The inhibition by a local anaesthetic is similar to observations on vertebrates and is consistent with the idea that these crustaceans can experience pain.
Resumo:
Contestants can either assess their own resource-holding potential relative to their opponent (mutual assessment) or rely solely on the assessment of their own fighting ability (self-assessment). To discriminate between these possibilities, we staged dyadic territorial contests between 'size-matched' male swordtails. These contests consist of a combination of ritualized displays and direct fighting. Although size differences were small, winners were larger than losers and smaller fish tended to be winners only when the size difference was negligible. Body size, however, did not influence contest duration and there was no increase in contest duration with mean body size; thus, there is no support for self-assessment in these animals. We also examined the effects of the sword, which comprises a sexually selected extension used in female choice that reduces swimming efficiency but increases acceleration. The length of the sword (adjusted for body size) did not differ between winners and losers; however, losers conceded earlier if the opponent had a large sword for its body size but this decision was independent of the loser's own sword length. Losers thus assessed the swords of winners, which precludes self-assessment; however, because winners appeared not to assess the swords of losers, this does not fully support the idea of mutual assessment. (c) 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fisheries can have profound effects on epifaunal community function and structure. We analysed the results from five dive surveys (1975–1976, 1980, 1983, 2003 and 2007), taken in a Special Area of Conservation, Strangford Lough, Northern Ireland before and after a ten year period of increased trawling activity between 1985 and 1995. There were no detectable differences in the species richness or taxonomic distinctiveness before (1975–1983) and after (2003–2007) this period. However, there was a shift in the epifaunal assemblage between the surveys in 1975–1983 and 2003–2007. In general, the slow-moving, or sessile, erect, filterfeeders were replaced by highly mobile, swimming, scavengers and predators. There were declines in the frequency of the fished bivalve Aequipecten opercularis and the non-fished bivalves Modiolus modiolus and Chlamys varia and some erect sessile invertebrates between the surveys in 1975–1983 and 2003–2007. In contrast, there were increases in the frequency of the fished and reseeded bivalves Pecten maximus and Ostrea edulis, the fished crabs Cancer pagurus and Necora puber and the non-fished sea stars Asterias rubens, Crossaster papposus and Henricia oculata between the surveys in 1975–1983 and 2003–2007. We suggest that these shifts could be directly and indirectly attributed to the long-termimpacts of trawl fishing gear, although increases in the supply of discarded bait and influxes of sediment may also have contributed to changes in the frequency of some taxa. These results suggest that despite their limitations, historical surveys and repeat sampling over long periods can help to elucidate the inferred patterns in the epifaunal community. The use of commercial fishing gear was banned from two areas in Strangford Lough in 2011, making it a model ecosystem for assessing the long-term recovery of the epifaunal community from the impacts of mobile and pot fishing gear.
Resumo:
Background: Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. Principal Findings: In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate ‘stepping stone’ populations yet to be discovered. Conclusions/Significance: We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.
Resumo:
Hopanoids are pentacyclic triterpenoids that are thought to be bacterial surrogates for eukaryotic sterols, such as cholesterol, acting to stabilize membranes and to regulate their fluidity and permeability. To date, very few studies have evaluated the role of hopanoids in bacterial physiology. The synthesis of hopanoids depends on the enzyme squalene-hopene cyclase (Shc), which converts the linear squalene into the basic hopene structure. Deletion of the 2 genes encoding Shc enzymes in Burkholderia cenocepacia K56-2, BCAM2831 and BCAS0167, resulted in a strain that was unable to produce hopanoids, as demonstrated by gas chromatography and mass spectrometry. Complementation of the Delta shc mutant with only BCAM2831 was sufficient to restore hopanoid production to wild-type levels, while introducing a copy of BCAS0167 alone into the Delta shc mutant produced only very small amounts of the hopanoid peak. The Delta shc mutant grew as well as the wild type in medium buffered to pH 7 and demonstrated no defect in its ability to survive and replicate within macrophages, despite transmission electron microscopy (TEM) revealing defects in the organization of the cell envelope. The Delta shc mutant displayed increased sensitivity to low pH, detergent, and various antibiotics, including polymyxin B and erythromycin. Loss of hopanoid production also resulted in severe defects in both swimming and swarming motility. This suggests that hopanoid production plays an important role in the physiology of B. cenocepacia.
Resumo:
Acceleration data loggers can be used to construct time-energy budgets or identify specific behaviours in free living animals. Within a marine context such devices have been largely deployed on vertebrates with comparatively little attention paid to commercially important invertebrates such as cephalopod molluscs. Here we tested the utility of tri-axial accelerometers to tease apart six discrete behaviours in the common cuttlefish Sepia officinalis. By considering depth profiles in conjunction with body pitch and roll and overall dynamic body acceleration we were able to make distinctions between resting at the seabed, active swimming, mating, post-coital panting and active manoeuvring along the seabed. © 2012 Marine Biological Association of the United Kingdom.
Resumo:
Over the past few decades, there has been an increased frequency and duration of cyanobacterial Harmful Algal Blooms (HABs) in freshwater systems globally. These can produce secondary metabolites called cyanotoxins, many of which are hepatotoxins, raising concerns about repeated exposure through ingestion of contaminated drinking water or food or through recreational activities such as bathing/ swimming. An ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) multi-toxin method has been developed and validated for freshwater cyanotoxins; microcystins-LR, -YR, -RR, -LA, -LY and -LF, nodularin, cylindrospermopsin, anatoxin-a and the marine diatom toxin domoic acid. Separation was achieved in around 9 min and dual SPE was incorporated providing detection limits of between 0.3 and 5.6 ng/L of original sample. Intra- and inter-day precision analysis showed relative
standard deviations (RSD) of 1.2–9.6% and 1.3–12.0% respectively. The method was applied to the analysis of aquatic samples (n = 206) from six European countries. The main class detected were the hepatotoxins; microcystin-YR (n = 22), cylindrospermopsin (n = 25), microcystin-RR (n = 17), microcystin-LR (n = 12), microcystin-LY (n = 1), microcystin-LF (n = 1) and nodularin (n = 5). For microcystins, the levels detected ranged from 0.001 to 1.51 mg/L, with two samples showing combined levels above the guideline set by the WHO of 1 mg/L for microcystin-LR. Several samples presented with multiple toxins indicating the potential for synergistic effects and possibly enhanced toxicity. This is the first published pan European survey of freshwater bodies for multiple biotoxins, including two identified for the first time; cylindrospermopsin in Ireland and nodularin in Germany, presenting further incentives for improved monitoring and development of strategies to mitigate human exposure.