14 resultados para SURGICAL SITE INFECTION
Resumo:
Assessing risk has become part of the process of supporting patients andmaintaining safety in the healthcare setting. The risk of healthcare associatedinfections (HCAIs) has long been well documented and surgical site infection (SSI)is recognised as one of the most prevalent (Tanner & Khan 2008, Wilson 2013a).
Resumo:
A 34-year-old female patient presented with an intracranial subarachnoid hemorrhage and was found to have a dural arteriovenous fistula at the site of previous cervical meningocele repair. Subsequent occlusion was achieved with endovascular embolization. To our knowledge, the phenomenon of the development of a spinal dural fistula at the site of a meningocele repair has not been recorded before.
Resumo:
Aim: The aim of this study was to determine if asthmatic children have viruses more commonly detected in lower airways during asymptomatic periods than normal children. Methods: Fifty-five asymptomatic children attending elective surgical procedures (14 with stable asthma, 41 normal controls) underwent non-bronchoscopic bronchoalveolar lavage. Differential cell count and PCR for 13 common viruses were performed. Results: Nineteen (35%) children were positive for at least one virus, with adenovirus being most common. No differences in the proportion of viruses detected were seen between asthmatic and normal ‘control’ children. Viruses other than adenovirus were associated with higher neutrophil counts, suggesting that they caused an inflammatory response in both asthmatics and controls (median BAL neutrophil count, 6.9% for virus detected vs. 1.5% for virus not detected, p = 0.03). Conclusions: Over one-third of asymptomatic children have a detectable virus (most commonly adenovirus) in the lower airway; however, this was not more common in asthmatics. Viruses other than adenovirus were associated with elevated neutrophils suggesting that viral infection can be present during relatively asymptomatic periods in asthmatic children.
Resumo:
Pseudomonas elastase (LasB), a metalloprotease virulence factor, is known to play a pivotal role in pseudomonal infection. LasB is secreted at the site of infection, where it exerts a proteolytic action that spans from broad tissue destruction to subtle action on components of the host immune system. The former enhances invasiveness by liberating nutrients for continued growth, while the latter exerts an immunomodulatory effect, manipulating the normal immune response. In addition to the extracellular effects of secreted LasB, it also acts within the bacterial cell to trigger the intracellular pathway that initiates growth as a bacterial bio?lm. The key role of LasB in pseudomonal virulence makes it a potential target for the development of an inhibitor as an antimicrobial agent. The concept of inhibition of virulence is a recently established antimicrobial strategy, and such agents have been termed “second-generation” antibiotics. This approach holds promise in that it seeks to attenuate virulence processes without bactericidal action and, hence, without selection pressure for the emergence of resistant strains. A potent inhibitor of LasB,N-mercaptoacetyl-Phe-Tyr-amide (Ki 41 nM) has been developed, and its ability to block these virulence processes has been assessed. It has been demonstrated that thes compound can completely block the action of LasB on protein targets that are instrumental in bio?lm formation and immunomodulation. The novel LasB inhibitor has also been employed in bacterial-cell-based assays, to reduce the growth of pseudomonal bio?lms, and to eradicate bio?lm completely when used in combination with conventional antibiotics.
Resumo:
Secretory leukocyte protease inhibitor (SLPI) is an important respiratory tract host defense protein, which is proteolytically inactivated by excessive neutrophil elastase (NE) during chronic Pseudomonas infection in the cystic fibrosis (CF) lung. We generated two putative NE-resistant variants of SLPI by site-directed mutagenesis, SLPI-A16G and SLPI-S15G-A16G, with a view to improving SLPI’s proteolytic stability. Both variants showed enhanced resistance to degradation in the presence of excess NE as well as CF patient sputum compared with SLPI-wild type (SLPI-WT). The ability of both variants to bind bacterial lipopolysaccharides and interact with nuclear factor-κB DNA binding sites was also preserved. Finally, we demonstrate increased anti-inflammatory activity of the SLPI-A16G protein compared with SLPI-WT in a murine model of pulmonary Pseudomonas infection. This study demonstrates the increased stability of these SLPI variants compared with SLPI-WT and their therapeutic potential as a putative anti-inflammatory treatment for CF lung disease.
Resumo:
Respiratory Syncytial Virus (RSV) is an important causative agent of lower respiratory tract infections in infants and elderly. Its fusion (F) protein is critical for virus infection. It is targeted by several investigational antivirals and by palivizumab, a humanised monoclonal antibody used prophylactically in infants considered at high risk of severe RSV disease. ALX-0171 is a trimeric Nanobody that binds the antigenic site II of RSV F-protein with subnanomolar affinity. ALX-0171 demonstrated superior in vitro neutralisation compared to palivizumab against prototypic RSV A and B strains. Moreover, ALX-0171 completely blocked replication below limit of detection in 87% of the viruses tested versus 18% for palivizumab at a fixed concentration. Importantly, ALX-0171 was highly effective in reducing both nasal and lung RSV titers when delivered prophylactically or therapeutically directly to the lungs of cotton rats. ALX-0171 represents a potent novel antiviral compound with significant potential to treat RSV-mediated disease.
Resumo:
Quantitative point-of-care (POC) devices are the next generation for serological disease diagnosis. Whilst pathogen serology is typically performed by centralized laboratories using Enzyme-Linked ImmunoSorbent Assay (ELISA), faster on-site diagnosis would infer improved disease management and treatment decisions. Using the model pathogen Bovine Herpes Virus-1 (BHV-1) this study employs an extended-gate field-effect transistor (FET) for direct potentiometric serological diagnosis. BHV-1 is a major viral pathogen of Bovine Respiratory Disease (BRD), the leading cause of economic loss ($2 billion annually in the US only) to the cattle and dairy industry. To demonstrate the sensor capabilities as a diagnostic tool, BHV-1 viral protein gE was expressed and immobilized on the sensor surface to serve as a capture antigen for a BHV-1-specific antibody (anti-gE), produced in cattle in response to viral infection. The gE-coated immunosensor was shown to be highly sensitive and selective to anti-gE present in commercially available anti-BHV-1 antiserum and in real serum samples from cattle with results being in excellent agreement with Surface Plasmon Resonance (SPR) and ELISA. The FET sensor is significantly faster than ELISA (<10 min), a crucial factor for successful disease intervention. This sensor technology is versatile, amenable to multiplexing, easily integrated to POC devices, and has the potential to impact a wide range of human and animal diseases.
Resumo:
BACKGROUND: This study aims to assess the quality of various steps of manual small incision cataract surgery and predictors of quality, using video recordings.
DESIGN: This paper applies a retrospective study.
PARTICIPANTS: Fifty-two trainees participated in a hands-on small incision cataract surgery training programme at rural Chinese hospitals.
METHODS: Trainees provided one video each recorded by a tripod-mounted digital recorder after completing a one-week theoretical course and hands-on training monitored by expert trainers. Videos were graded by two different experts, using a 4-point scale developed by the International Council of Ophthalmology for each of 12 surgical steps and six global factors. Grades ranged from 2 (worst) to 5 (best), with a score of 0 if the step was performed by trainers.
MAIN OUTCOME MEASURES: Mean score for the performance of each cataract surgical step rated by trainers.
RESULTS: Videos and data were available for 49/52 trainees (94.2%, median age 38 years, 16.3% women and 77.5% completing > 50 training cases). The majority (53.1%, 26/49) had performed ≤ 50 cataract surgeries prior to training. Kappa was 0.57∼0.98 for the steps (mean 0.85). Poorest-rated steps were draping the surgical field (mean ± standard deviation = 3.27 ± 0.78), hydro-dissection (3.88 ± 1.22) and wound closure (3.92 ± 1.03), and top-rated steps were insertion of viscoelastic (4.96 ± 0.20) and anterior chamber entry (4.69 ± 0.74). In linear regression models, higher total score was associated with younger age (P = 0.015) and having performed >50 independent manual small incision cases (P = 0.039).
CONCLUSIONS: More training should be given to preoperative draping, which is poorly performed and crucial in preventing infection. Surgical experience improves ratings.© 2015 Royal Australian and New Zealand College of Ophthalmologists.
Resumo:
PURPOSE: China has among the lowest cataract surgical rates in Asia. This study was conducted to identify barriers to cataract surgery in rural China. METHODS: All subjects having undergone cataract surgery and persons with presenting visual acuity <or=6/60 (in Yangjiang) or <or=6/18 (in Handan) in >or=1 eye due to nonsurgically treated cataract were identified in two population-based studies in southern (Yangjiang) and northern (Handan) China. The subjects were administered a questionnaire assessing attitudes in four areas constituting potential barriers to surgery: knowledge about cataract, perceptions of local surgical quality, transportation and cost, and available resources. RESULTS: Interviews were completed on 71% to 86% of eligible subjects in both sites. Interviewed subjects did not differ significantly from nonrespondents with regard to age, sex, and presenting acuity in the better-seeing eye. A total of 214 (80.4%) nonsurgical and 131 (76.6%) surgical participants were interviewed, with a mean age of 71.8 +/- 8.0 and 73.7 +/- 7.4 years, respectively (P > 0.1). Among the nonsurgical subjects, 67.8% were blind (presenting vision, <or=6/60) in >or=1 eye due to cataract, whereas among the surgical participants, 25.2% remained blind in the eye that had undergone surgical removal of the cataract. In a multivariate analysis adjusted for age, sex, and site, increased knowledge and higher estimates of the quality of surgery were associated with having had surgery, whereas cost and transportation scores were not. CONCLUSIONS: Lack of knowledge about cataract and concerns about the quality of local services appear to be the principal barriers to cataract surgery in rural China.
Resumo:
The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation, and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction.
Resumo:
The human pathogens enteropathogenic (EPEC) and enterohemorrhagic Escherichia coli and the related mouse pathogen Citrobacter rodentium subvert a variety of host cell signaling pathways via their plethora of type III secreted effectors, including triggering of an early apoptotic response. EPEC-infected cells do not develop late apoptotic symptoms, however. In this study we demonstrate that the NleH family effectors, homologs of the Shigella effector kinase OspG, blocks apoptosis. During EPEC infection, NleH effectors inhibit elevation of cytosolic Ca(2+) concentrations, nuclear condensation, caspase-3 activation, and membrane blebbing and promote cell survival. NleH1 alone is sufficient to prevent procaspase-3 cleavage induced by the proapoptotic compounds staurosporine, brefeldin A, and tunicamycin. Using C. rodentium, we found that NleH inhibits procaspase-3 cleavage at the bacterial attachment sites in vivo. A yeast two-hybrid screen identified the endoplasmic reticulum six-transmembrane protein Bax inhibitor-1 (BI-1) as an NleH-interacting partner. We mapped the NleH-binding site to the N-terminal 40 amino acids of BI-1. Knockdown of BI-1 resulted in the loss of NleH's antiapoptotic activity. These results indicate that NleH effectors are inhibitors of apoptosis that may act through BI-1 to carry out their cytoprotective function.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen that colonizes the gut mucosa via attaching and effacing (A/E) lesions; A/E lesion formation in vivo and ex vivo is dependent on the type III secretion system (T3SS) effector Tir. Infection of cultured cells by EHEC leads to induction of localized actin polymerization, which is dependent on Tir and a second T3SS effector protein, TccP, also known as EspF(U). Recently, cortactin was shown to bind both the N terminus of Tir and TccP via its SH3 domain and to play a role in EHEC-triggered actin polymerization in vitro. In this study, we investigated the recruitment of cortactin to the site of EHEC adhesion during infection of in vitro-cultured cells and mucosal surfaces ex vivo (using human terminal ileal in vitro organ cultures [IVOC]). We have shown that cortactin is recruited to the site of EHEC adhesion in vitro downstream of TccP and N-WASP. Deletion of the entire N terminus of Tir or replacing the N-terminal polyproline region with alanines did not abrogate actin polymerization or cortactin recruitment. In contrast, recruitment of cortactin to the site of EHEC adhesion in IVOC is TccP independent. These results imply that cortactin is recruited to the site of EHEC adhesion in vitro and ex vivo by different mechanisms and suggest that cortactin might have a role during EHEC infection of mucosal surfaces.