11 resultados para SURFACE-MOLECULE GP82
Resumo:
Context. Complex molecules such as ethanol and dimethyl ether have been observed in a number of hot molecular cores and hot corinos. Attempts to model the molecular formation process using gas phase only models have so far been unsuccessful. Aims. To demonstrate that grain surface processing is a viable mechanism for complex molecule formation in these environments. Methods. A variable environment parameter computer model has been constructed which includes both gas and surface chemistry. This is used to investigate a variety of cloud collapse scenarios. Results. Comparison between model results and observation shows that by combining grain surface processing with gas phase chemistry complex molecules can be produced in observed abundances in a number of core and corino scenarios. Differences in abundances are due to the initial atomic and molecular composition of the core/corino and varying collapse timescales. Conclusions. Grain surface processing, combined with variation of physical conditions, can be regarded as a viable method for the formation of complex molecules in the environment found in the vicinity of a hot core/corino and produce abundances comparable to those observed.
Resumo:
We have modeled the gas phase chemistry of warm molecular material around protostars that is seeded with evaporating grain mantles. We show that the release of simple molecules into the gas drives ion-molecule and neutral chemistries which can account for many of the complex 0-bearing and N-bearing molecules observed in hot cores. Initial grain mantle components and secondary product molecules are identified, and the observational consequences are discussed.
Resumo:
Modifying the surfaces of metal nanoparticles with self-assembled monolayers of functionalized thiols provides a simple and direct method to alter their surface properties. Mixed self-assembled monolayers can extend this approach since, in principle, the surfaces can be tuned by altering the proportion of each modifier that is adsorbed. However, this works best if the composition and microstructure of the monolayers can be controlled. Here, we have modified preprepared silver colloids with binary mixtures of thiols at varying concentrations and modifier ratios. Surface-enhanced Raman spectroscopy was then used to determine the effect of altering these parameters on the composition of the resulting mixed monolayers. The data could be explained using a new model based on a modified competitive Langmuir approach. It was found that the composition of the mixed monolayer only reflected the ratio of modifiers in the feedstock when the total amount of modifier was sufficient for approximately one monolayer coverage. At higher modifier concentrations the thermodynamically favored modifier dominated, but working at near monolayer concentrations allowed the surface composition to be controlled by changing the ratios of modifiers. Finally, a positively charged porphyrin probe molecule was used to investigate the microstructure of the mixed monolayers, i.e., homogeneous versus domains. In this case the modifier domains were found to be <2 nm.
Resumo:
Saxitoxin (STX) is a low molecular weight neurotoxin mainly produced by certain marine dinoflagellates that, along with its family of similarly related paralytic shellfish toxins, may cause the potentially fatal intoxication known as paralytic shellfish poisoning. Illness and fatality rates are low due to the effective monitoring programs that determine when toxins exceed the established regulatory action level and effectuate shellfish harvesting closures accordingly. Such monitoring programs rely on the ability to rapidly screen large volumes of samples. Many of the screening assays currently available employ antibodies or live animals. This research focused on developing an analytical recognition element that would eliminate the challenges associated with the limited availability of antibodies and the use of animals. Here we report the discovery of a DNA aptamer that targets STX. Concentration-dependent and selective binding of the aptamer to STX was determined using a surface plasmon resonance sensor. Not only does this work represent the first reported aptamer to STX, but also the first aptamer to any marine biotoxin. A novel strategy of using a toxin-protein conjugate for DNA aptamer selection was successfully implemented to overcome the challenges associated with aptamer selection to small molecules. Taking advantage of such an approach could lead to increased diversity and accessibility of aptamers to low molecular weight toxins, which could then be incorporated as analytical recognition elements in diagnostic assays for foodborne toxin detection. The selected STX aptamer sequence is provided here, making it available to any investigator for use in assay development for the detection of STX.
Resumo:
A hierarchical nanoparticle strategy to simultaneously gain super Raman signal amplification, high uniformity, and reproducibility is presented. Using hollow Au-Ag alloy nanourchins, an ultrahigh sensitivity, e.g., down to 1 fM concentrations for DEHP molecule is obtained. A small standard deviation of <10% is achieved by simply dropping and evaporating sub-100 nm nanourchins onto a substrate.
Resumo:
Epidermal keratinocytes produce and secrete antimicrobial peptides (AMPs) that subsequently form a chemical shield on the skin surface. Cathelicidins are one family of AMPs in skin with various further immune functions. Consequently, dysfunction of these peptides has been implicated in the pathogenesis of inflammatory skin disease. In particular, the cathelicidin LL-37 is overexpressed in inflamed skin in psoriasis, binds to extracellular self-DNA released from dying cells and converts self-DNA in a potent stimulus for plasmacytoid dendritic cells (pDCs). Subsequently, pDCs secrete type I interferons and trigger an auto-inflammatory cascade. Paradoxically, therapies targeting the vitamin D pathway such as vitamin D analogues or UVB phototherapy ameliorate cutaneous inflammation in psoriasis but strongly induce cathelicidin expression in skin at the same time. Current evidence now suggests that self-DNA present in the cytosol of keratinocytes is also pro-inflammatory active and triggers IL-1β secretion in psoriatic lesions through the AIM2 inflammasome. This time, however, binding of LL-37 to self-DNA neutralizes DNA-mediated inflammation. Hence, cathelicidin LL-37 shows contrasting roles in skin inflammation in psoriasis and might serve as a target for novel therapies for this chronic skin disease.
Resumo:
In this paper, we probed surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from probe molecule Rhodamine 6G (R6G) on self-standing Au nanorod array substrates made using a combination of anodization and potentiostatic electrodeposition. The initial substrates were embedded within a porous alumina template (AAO). By controlling the thickness of the AAO matrix, SEF and SERS were observed exhibiting an inverse relationship. SERS and SEF showed a non-linear response to the removal of AAO matrix due to an inhomogeneous plasmon activity across the nanorod which was supported by FDTD calculations. We showed that by optimizing the level of AAO thickness, we could obtain either maximized SERS, SEF or simultaneously observe both SERS and SEF together.
Resumo:
A systematic theoretical study on the adsorption of steam and its thermal decomposition products on carbon both zigzag and armchair surface was performed to provide molecular-level understanding of the reaction activity of all these reactants in biomass steam gasification process. All the calculations were carried out using density functional theory (DFT) at the B3LYP/6-31+g(d,p) level. The structures of carbonaceous surfaces, all reactants and surface complexes were optimized and characterized. Based on the value of adsorption heat been obtained from the calculation, the activity of all reactants can be ordered as: O > O2 >H2 >H >OH >H2O for both zigzag and armchair surface, and the adsorption style is physisorption to water molecule and chemisorption to the other dissociated components.
Resumo:
BACKGROUND: The ovarian surface epithelium responds to cytokines and hormonal cues to initiate proliferation and migration following ovulation. Although insulin and IGF are potent proliferative factors for the ovarian surface epithelium and IGF is required for follicle development, increased insulin and IGF activity are correlated with at least two gynecologic conditions: polycystic ovary syndrome and epithelial ovarian cancer. Although insulin and IGF are often components of in vitro culture media, little is known about the effects that these growth factors may have on the ovarian surface epithelium morphology or how signaling in the ovarian surface may affect follicular health and development.
METHODS: Ovaries from CD1 mice were cultured in alginate hydrogels in the presence or absence of 5 μg/ml insulin or IGF-I, as well as small molecule inhibitors of IR/IGF1R, PI 3-kinase signaling, or MAPK signaling. Tissues were analyzed by immunohistochemistry for expression of cytokeratin 8 to mark the ovarian surface epithelium, Müllerian inhibiting substance to mark secondary follicles, and BrdU incorporation to assess proliferation. Changes in gene expression in the ovarian surface epithelium in response to insulin or IGF-I were analyzed by transcription array. Extracellular matrix organization was evaluated by expression and localization of collagen IV.
RESULTS: Culture of ovarian organoids with insulin or IGF-I resulted in formation of hyperplastic OSE approximately 4-6 cell layers thick with a high rate of proliferation, as well as decreased MIS expression in secondary follicles. Inhibition of the MAPK pathway restored MIS expression reduced by insulin but only partially restored normal OSE growth and morphology. Inhibition of the PI 3-kinase pathway restored MIS expression reduced by IGF-I and restored OSE growth to a single cell layer. Insulin and IGF-I altered organization of collagen IV, which was restored by inhibition of PI 3-kinase signaling.
CONCLUSIONS: While insulin and IGF are often required for propagation of primary cells, these cytokines may act as potent mitogens to disrupt cell growth, resulting in formation of hyperplastic OSE and decreased follicular integrity as measured by MIS expression and collagen deposition. This may be due partly to altered collagen IV deposition and organization in the ovary in response to insulin and IGF signaling mediated by PI 3-kinase.
Resumo:
The c-kit proto-oncogen (CD117) has been described to be present in normal and neoplastic hemopoietic cells including both myeloid and lymphoid lineages. Among the normal lymphoid cells CD117 expression would be restricted to a small subset of NK-cells, and to early T-cell precursors and it is not expressed by normal B-cells. Regarding chronic lymphoproliferative disorders the only data provided up to now suggests that CD117 expression is restricted to cases of Hodgkin's disease and anaplastic large-cell lymphoma. In the present paper we describe a case of a B-cell chronic lymphoproliferative disorder carrying the t(14:18) translocation as demonstrated by molecular studies, in which the flow cytometric immunophenotypic analysis of both peripheral blood and bone marrow samples revealed the expression of high amounts of the CD117 antigen in the surface of the clonal B-cell population. Further studies are necessary to explore both the functional role of c-kit expression in the neoplastic B-cells from this patient and its potential utility for the diagnosis and follow-up of patients with B-cell non-Hodgkin's lymphoma.