2 resultados para SUBTROPICAL MODE WATER
Resumo:
Thecamoebians were examined from 71 surface sediment samples collected from 21 lakes and ponds in the Greater Toronto Area to (1) elucidate the controls on faunal distribution in modern lake environments; and (2) to consider the utility of thecamoebians in quantitative studies of water quality change. This area was chosen because it includes a high density of kettle and other lakes which are threatened by urban development and where water quality has deteriorated locally as a result of contaminant inputs, particularly nutrients. Fifty-eight samples yielded statistically significant thecamoebian populations. The most diverse faunas (highest Shannon Diversity Index values) were recorded in lakes beyond the limits of urban development, although the faunas of all lakes showed signs of sub-optimal conditions. The assemblages were divided into five clusters using Q-mode cluster analysis, supported by Detrended Correspondence Analysis. Canonical Correspondence Analysis (CCA) was used to examine species-environment relationships and to explain the observed clusterings. Twenty-four measured environmental variables were considered, including water property attributes (e.g., pH, conductivity, dissolved oxygen), substrate characteristics, sediment-based phosphorus (Olsen P) and 11 environmentally available metals. The thecamoebian assemblages showed a strong association with phosphorus, reflecting the eutrophic status of many of the lakes, and locally to elevated conductivity measurements, which appear to reflect road salt inputs associated with winter de-icing operations. Substrate characteristics, total organic carbon and metal contaminants (particularly Cu and Mg) also influenced the faunas of some samples. A series of partial CCAs show that of the measured variables, sedimentary phosphorus has the largest influence on assemblage distribution, explaining 6.98% (P < 0.002) of the total variance. A transfer function was developed for sedimentary phosphorus (Olsen P) using 58 samples from 15 of the studied lakes. The best performing model was based on weighted averaging with inverse deshrinking (WA Inv, r jack 2= 0.33, RMSEP = 102.65 ppm). This model was applied to a small modern thecamoebian dataset from a eutrophic lake in northern Ontario to predict phosphorus and performed satisfactorily. This preliminary study confirms that thecamoebians have considerable potential as quantitative water quality indicators in urbanising regions, particularly in areas influenced by nutrient inputs and road salts.
Resumo:
Fungal growth inhibition by ethanol was compared with that caused by five other agents of water stress (at 25, 40 and 42.5°C), using Aspergillus oryzae. Ethanol, KCl, glycerol, glucose, sorbitol, and polyethylene glycol 400 were incorporated into media at concentrations corresponding to water activity (a(w)) values in the range 1 to 0.75. Generally, as temperature increased there was a decrease in the a(w) value at which optimum growth occurred. The a(w) limit for growth on KCl, glycerol, glucose, sorbitol, or polyethylene glycol 400 media was about 0.85, regardless of temperature. However, the a(w) limit for growth on ethanol media varied between 0.97 and 0.99 a(w) and was temperature-dependent. Water stress accounted for up to 31, 18 and 6% of growth inhibition by ethanol at 25, 40, and 42.5°C, respectively. For media containing ethanol, the decrease in growth rate per unit of a(w) reduction was greater as temperature increased. However, ethanol-induced water stress remained constant regardless of temperature, suggesting that other inhibitory effects of ethanol are closely temperature- dependent. Water stress may account for considerably more than 30% of growth inhibition by ethanol in cells that remain metabolically active at higher ethanol concentrations.