3 resultados para SUBGRAPHS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In distributed networks, it is often useful for the nodes to be aware of dense subgraphs, e.g., such a dense subgraph could reveal dense substructures in otherwise sparse graphs (e.g. the World Wide Web or social networks); these might reveal community clusters or dense regions for possibly maintaining good communication infrastructure. In this work, we address the problem of self-awareness of nodes in a dynamic network with regards to graph density, i.e., we give distributed algorithms for maintaining dense subgraphs that the member nodes are aware of. The only knowledge that the nodes need is that of the dynamic diameter D, i.e., the maximum number of rounds it takes for a message to traverse the dynamic network. For our work, we consider a model where the number of nodes are fixed, but a powerful adversary can add or remove a limited number of edges from the network at each time step. The communication is by broadcast only and follows the CONGEST model. Our algorithms are continuously executed on the network, and at any time (after some initialization) each node will be aware if it is part (or not) of a particular dense subgraph. We give algorithms that (2 + e)-approximate the densest subgraph and (3 + e)-approximate the at-least-k-densest subgraph (for a given parameter k). Our algorithms work for a wide range of parameter values and run in O(D log n) time. Further, a special case of our results also gives the first fully decentralized approximation algorithms for densest and at-least-k-densest subgraph problems for static distributed graphs. © 2012 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In distributed networks, some groups of nodes may have more inter-connections, perhaps due to their larger bandwidth availability or communication requirements. In many scenarios, it may be useful for the nodes to know if they form part of a dense subgraph, e.g., such a dense subgraph could form a high bandwidth backbone for the network. In this work, we address the problem of self-awareness of nodes in a dynamic network with regards to graph density, i.e., we give distributed algorithms for maintaining dense subgraphs (subgraphs that the member nodes are aware of). The only knowledge that the nodes need is that of the dynamic diameter D, i.e., the maximum number of rounds it takes for a message to traverse the dynamic network. For our work, we consider a model where the number of nodes are fixed, but a powerful adversary can add or remove a limited number of edges from the network at each time step. The communication is by broadcast only and follows the CONGEST model in the sense that only messages of O(log n) size are permitted, where n is the number of nodes in the network. Our algorithms are continuously executed on the network, and at any time (after some initialization) each node will be aware if it is part (or not) of a particular dense subgraph. We give algorithms that approximate both the densest subgraph, i.e., the subgraph of the highest density in the network, and the at-least-k-densest subgraph (for a given parameter k), i.e., the densest subgraph of size at least k. We give a (2 + e)-approximation algorithm for the densest subgraph problem. The at-least-k-densest subgraph is known to be NP-hard for the general case in the centralized setting and the best known algorithm gives a 2-approximation. We present an algorithm that maintains a (3+e)-approximation in our distributed, dynamic setting. Our algorithms run in O(Dlog n) time. © 2012 Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Healing algorithms play a crucial part in distributed peer-to-peer networks where failures occur continuously and frequently. Whereas there are approaches for robustness that rely largely on built-in redundancy, we adopt a responsive approach that is more akin to that of biological networks e.g. the brain. The general goal of self-healing distributed graphs is to maintain certain network properties while recovering from failure quickly and making bounded alterations locally. Several self-healing algorithms have been suggested in the recent literature [IPDPS'08, PODC'08, PODC'09, PODC'11]; they heal various network properties while fulfilling competing requirements such as having low degree increase while maintaining connectivity, expansion and low stretch of the network. In this work, we augment the previous algorithms by adding the notion of edge-preserving self-healing which requires the healing algorithm to not delete any edges originally present or adversarialy inserted. This reflects the cost of adding additional edges but more importantly it immediately follows that edge preservation helps maintain any subgraph induced property that is monotonic, in particular important properties such as graph and subgraph densities. Density is an important network property and in certain distributed networks, maintaining it preserves high connectivity among certain subgraphs and backbones. We introduce a general model of self-healing, and introduce xheal+, an edge-preserving version of xheal[PODC'11]. © 2012 IEEE.