8 resultados para STELLAR RADIATIVE ZONES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are, however, found in multiple systems. 

Aims: By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary subpopulations with one another and with that of presumed-single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the spin rates of massive stars. 

Methods: We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (νesini) for components of 114 spectroscopic binaries in 30 Doradus. The νesini values are derived from the full width at half maximum (FWHM) of a set of spectral lines, using a FWHM vs. νesini calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. 

Results: The overall νesini distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at νesini<200 kms-1) and a shoulder at intermediate velocities (200 <νesini<300 kms-1). The distributions of binaries and single stars, however, differ in two ways. First, the main peak at νesini ~ 100kms-1 is broader and slightly shifted towards higher spin rates in the binary distribution than that of the presumed-single stars. This shift is mostly due to short-period binaries (Porb~<10 d). Second, the νesini distribution of primaries lacks a significant population of stars spinning faster than 300 kms-1, while such a population is clearly present in the single-star sample. The νesini distribution of binaries with amplitudes of radial velocity variation in the range of 20 to 200 kms-1 (mostly binaries with Porb ~ 10-1000 d and/or with q<0.5) is similar to that of single O stars below νesini~<170kms-1

Conclusions: Our results are compatible with the assumption that binary components formed with the same spin distribution as single stars, and that this distribution contains few or no fast-spinning stars. The higher average spin rate of stars in short-period binaries may either be explained by spin-up through tides in such tight binary systems, or by spin-down of a fraction of the presumed-single stars and long-period binaries through magnetic braking (or by a combination of both mechanisms). Most primaries and secondaries of SB2 systems with Porb~<10 d appear to have similar rotational velocities. This is in agreement with tidal locking in close binaries where the components have similar radii. The lack of very rapidly spinning stars among binary systems supports the idea that most stars with νesini~> 300kms-1 in the single-star sample are actually spun-up post-binary interaction products. Finally, the overall similarities (low-velocity peak and intermediate-velocity shoulder) of the spin distribution of binary and single stars argue for a massive star formation process in which the initial spin is set independently of whether stars are formed as single stars or as components of a binary system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy levels and radiative rates (. A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report calculations of energy levels and radiative rates (A-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although grasp (general-purpose relativistic atomic structure package) and flexible atomic code (fac) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3%. The A-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calculations of energy levels, radiative rates and lifetimes are reported for eight ions of tungsten, i.e. S-like (W LIX) to F-like (W LXVI). A large number of levels have been considered for each ion and extensive configuration interaction has been included among a range of configurations. For the calculations, the general-purpose relativistic atomic structure package (. grasp) has been adopted, and radiative rates (as well as oscillator strengths and line strengths) are listed for all E1, E2, M1, and M2 transitions of the ions. Comparisons have been made with earlier available experimental and theoretical energies, although these are limited to only a few levels for most ions. Therefore for additional accuracy assessments, particularly for energy levels, analogous calculations have been performed with the flexible atomic code (. fac).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energies and lifetimes are reported for the eight Br-like ions with 43≤Z≤50, namely Tc IX, Ru X, Rh XI, Pd XII, Ag XIII, Cd XIV, In XV, and Sn XVI. Results are listed for the lowest 375 levels, which mostly belong to the 4s24p5, 4s24p44ℓ, 4s4p6,4s24p45ℓ, 4s24p34d2, 4s4p54ℓ, and 4s4p55ℓ configurations. Extensive configuration interaction among 39 configurations (generating 3990 levels) has been considered and the general-purpose relativistic atomic structure package (grasp) has been adopted for the calculations. Radiative rates are listed for all E1, E2, M1, and M2 transitions involving the lowest 375 levels. Previous experimental and theoretical energies are available for only a few levels of three, namely Ru X, Rh XI and Pd XII. Differences with the measured energies are up to 4% but the present results are an improvement (by up to 0.3 Ryd) in comparison to other recently reported theoretical data. Similarly for radiative rates and lifetimes, prior results are limited to those involving only 31 levels of the 4s24p5, 4s24p44d, and 4s4p6 configurations for the last four ions. Moreover, there are generally no discrepancies with our results, although the larger calculations reported here differ by up to two orders of magnitude for a few transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calculations of energy levels, radiative rates and lifetimes are reported for 17 F-like ions with 37≤Z≤53. For brevity, results are only presented among the lowest 113 levels of the 2s22p5, 2s2p6, 2s22p43ℓ, 2s2p53ℓ, and 2p63ℓ configurations, although the calculations have been performed for up to 501 levels in each ion. The general-purpose relativistic atomic structure package (grasp) has been adopted for the calculations, and radiative rates (along with oscillator strengths and line strengths) are listed for all E1, E2, M1, and M2 transitions of the ions. Comparisons are made with earlier available experimental and theoretical energies, although these are limited to only a few levels for most ions. Therefore for additional accuracy assessments, particularly for energy levels, analogous calculations have been performed with the Flexible Atomic Code (fac), for up to 72 259 levels. Limited previous results are available for radiative rates for comparison purposes, and no large discrepancy is observed for any transition and/or ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gravitationally confined detonation (GCD) model has been proposed as a possible explosion mechanism for Type Ia supernovae in the single-degenerate evolution channel. It starts with ignition of a deflagration in a single off-centre bubble in a near-Chandrasekhar-mass white dwarf. Driven by buoyancy, the deflagration flame rises in a narrow cone towards the surface. For the most part, the main component of the flow of the expanding ashes remains radial, but upon reaching the outer, low-pressure layers of the white dwarf, an additional lateral component develops. This causes the deflagration ashes to converge again at the opposite side, where the compression heats fuel and a detonation may be launched. We first performed five three-dimensional hydrodynamic simulations of the deflagration phase in 1.4 M⊙ carbon/oxygen white dwarfs at intermediate-resolution (2563computational zones). We confirm that the closer the initial deflagration is ignited to the centre, the slower the buoyant rise and the longer the deflagration ashes takes to break out and close in on the opposite pole to collide. To test the GCD explosion model, we then performed a high-resolution (5123 computational zones) simulation for a model with an ignition spot offset near the upper limit of what is still justifiable, 200 km. This high-resolution simulation met our deliberately optimistic detonation criteria, and we initiated a detonation. The detonation burned through the white dwarf and led to its complete disruption. For this model, we determined detailed nucleosynthetic yields by post-processing 106 tracer particles with a 384 nuclide reaction network, and we present multi-band light curves and time-dependent optical spectra. We find that our synthetic observables show a prominent viewing-angle sensitivity in ultraviolet and blue wavelength bands, which contradicts observed SNe Ia. The strong dependence on the viewing angle is caused by the asymmetric distribution of the deflagration ashes in the outer ejecta layers. Finally, we compared our model to SN 1991T. The overall flux level of the model is slightly too low, and the model predicts pre-maximum light spectral features due to Ca, S, and Si that are too strong. Furthermore, the model chemical abundance stratification qualitatively disagrees with recent abundance tomography results in two key areas: our model lacks low-velocity stable Fe and instead has copious amounts of high-velocity 56Ni and stable Fe. We therefore do not find good agreement of the model with SN 1991T.